

Physics 101

Summer Semester
 Second Midterm Exam
 Saturday, August 6, 2022
 9:00 AM – 10:30 AM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Fatema Aldossari
 Dr. Abdul Khaleq

Dr. Belal Salameh

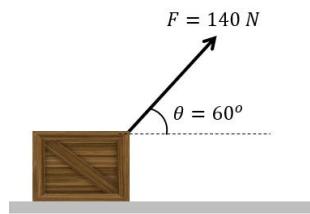
For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	SP6	LP1	LP2	Q1	Q2	Q3	Q4	Q5	Total
	2	2	2	2	2	2	4	4	1	1	1	1	1	25
Pts														

Important:

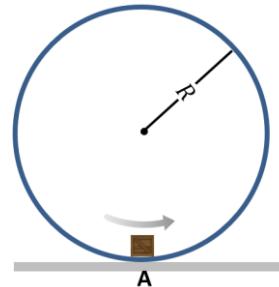
1. Answer all questions and problems (No solution = no points).
2. Full mark = 25 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**


GOOD LUCK

Part I: Short Problems (2 points each)

SP1. A block of mass ($M = 35 \text{ kg}$) rests on a **frictionless surface**. A constant force ($F = 140 \text{ N}$) is applied to the block at an angle $\theta = 60^\circ$ with the horizontal, as shown. **Find the magnitude of the block's acceleration.**

$$F \cos 60^\circ = ma$$


$$a = \frac{F \cos 60^\circ}{m} = 2 \text{ m/s}^2$$

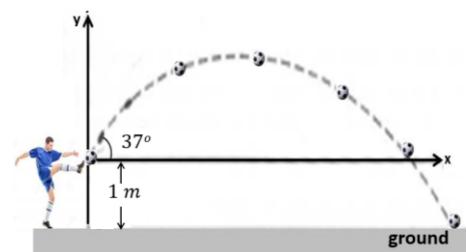
SP2. A vertical hoop of radius (R) is fixed to the ground. A small block of mass $m = 0.2 \text{ kg}$ is sliding along the inside surface of the hoop **without friction**, as shown. At the **lowest point (point A)**, the block has a speed $v_A = 2 \text{ m/s}$ and the normal force on it from the hoop is $n_A = 4 \text{ N}$. **Find the radius R of the hoop.**

$$n_A - mg = m \frac{v_A^2}{R}$$

$$R = \frac{mv_A^2}{n_A - mg} = 0.4 \text{ m}$$

SP3. A football player kicked a ball with an initial speed $v_i = 20 \text{ m/s}$ at an angle 37° above the horizontal. The ball left his foot at **a height of 1 m above the ground**, as shown. **Find the speed of the ball just before it hits the ground.**

$$v_{xi} = v_i \cos \theta = 20 \cos 37^\circ = 16 \text{ m/s}$$


$$v_{yi} = v_i \sin \theta = 20 \sin 37^\circ = 12 \text{ m/s}$$

$$v_{yf}^2 = v_{yi}^2 - 2g\Delta y = 12^2 - 20(-1) = 164$$

$$v_{yf} = -12.8 \text{ m/s}$$

$$v_{xf} = v_{xi} = 16 \text{ m/s}$$

$$v_f = \sqrt{-12.8^2 + 16^2} = 20.5 \text{ m/s}$$

SP4. A block of mass $m = 2 \text{ Kg}$ is initially at rest at $x = 0 \text{ m}$ on a **horizontal frictionless surface**. A horizontal force along the $x - \text{axis}$, $F(x) = 4 + 3x^2$ where x is in m , is applied to the block. **Use the work energy theorem to find the speed of the block as it passes through $x = 2 \text{ m}$.**

$$w_{\text{total}} = \Delta K$$

$$\int_{x_i}^{x_f} F(x) dx = \frac{1}{2} m(v_f^2 - v_i^2)$$

$$\int_{x_i}^{x_f} (4 + 3x^2) dx = [4x + x^3]_0^2 = \frac{1}{2} (2)(v_f^2 - 0) \Rightarrow v_f = 4 \text{ m/s}$$

SP5. The figure shows a block of mass $m = 2 \text{ kg}$ moving on a horizontal **rough surface** ($\mu_k = 0.3$) and an uncompressed spring ($k = 1500 \text{ N/m}$) with one end attached to a wall. The speed of the block **before it touches the spring** is 4 m/s . **Find the speed of the block at the instant the spring has been compressed $x = 0.12 \text{ m}$.**

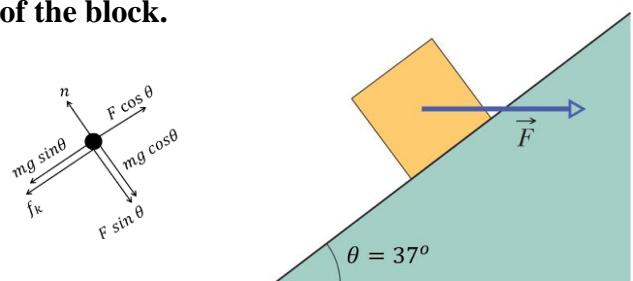
$$w_{\text{total}} = \Delta K$$

$$w_{F_s} + w_{f_k} = \Delta K$$

$$\frac{1}{2} k(x_i^2 - x_f^2) - \mu_k m g d = \frac{1}{2} m(v_f^2 - v_i^2)$$

$$\frac{1}{2} (1500)(0 - 0.12^2) - (0.3)(20)(0.12) = \frac{1}{2} (2)(v_f^2 - 4^2)$$

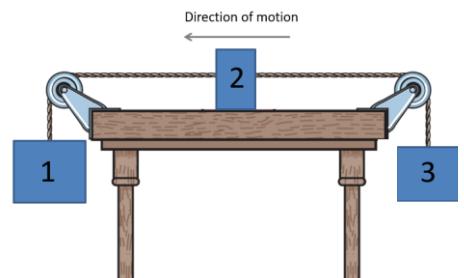
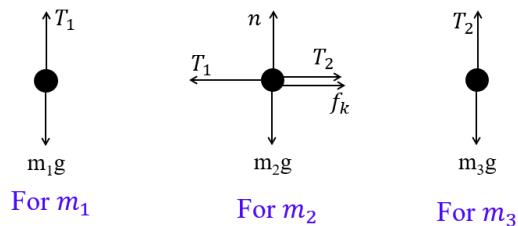
$$v_f = 2.1 \text{ m/s}$$


SP6. A 2 kg block **starts from rest and slides up** a rough incline ($\mu_k = 0.5$) while a **horizontal force** ($F = 50 \text{ N}$) acts on it, as shown. **Find the acceleration of the block.**

$$n = F \sin \theta + mg \cos \theta = 46.1 \text{ N}$$

$$F \cos \theta - mg \sin \theta - f_k = ma$$

$$F \cos \theta - mg \sin \theta - \mu_k n = ma$$



$$a = \frac{F \cos \theta - mg \sin \theta - \mu_k n}{m} = 2.4 \text{ m/s}^2$$

Part II: Long Problems (4 points each)

LP1. Three blocks ($m_1 = 3.5 \text{ Kg}$, $m_2 = 1 \text{ Kg}$, $m_3 = 2.5 \text{ Kg}$) are connected by two ropes and block 2 moves to the left on a **rough table** ($\mu_k = 0.3$), as shown. The pulleys are frictionless and massless.

a) Plot a free-body diagram for each block.

b) Find the acceleration of the system.

For m_{total}

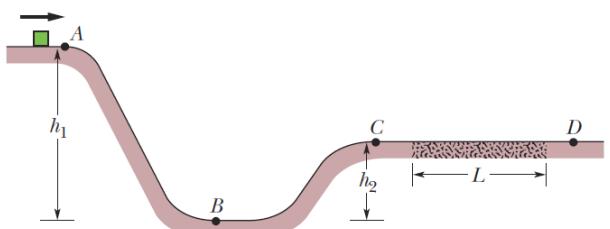
$$m_1g - \mu_k m_2g - m_2g = (m_1 + m_2 + m_3) a$$

$$a = \frac{m_1g - \mu_k m_2g - m_2g}{m_1 + m_2 + m_3} = 1 \text{ m/s}^2$$

c) Find the tension in each of the two ropes (T_1 and T_2).

For m_1

$$m_1g - T_1 = m_1a \Rightarrow T_1 = m_1(g - a) = 31.5 \text{ N}$$


For m_2

$$T_2 - m_2g = m_2a \Rightarrow T_2 = m_2(g + a) = 27.5 \text{ N}$$

LP2 A small block of mass $m = 0.4 \text{ Kg}$ is sent through point A with a speed of 7 m/s . Its path is frictionless until it reaches the section of length $L = 12 \text{ m}$, where the coefficient of kinetic friction is $\mu_k = 0.7$. The indicated heights are $h_1 = 6 \text{ m}$ and $h_2 = 2 \text{ m}$.

a) **Find the work done by the gravitational force during the displacement from A to B.**

$$w_{mg} = +mgh_1 = +0.4(10)(6) = +24 \text{ J}$$

b) **Find the speed of the block at point C.**

$$\sum w = \Delta K$$

$$w_{mg} = K_C - K_A$$

$$mg(h_1 - h_2) = \frac{1}{2}m(v_C^2 - v_A^2)$$

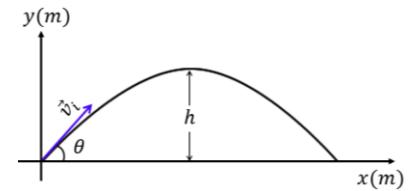
$$16 = \frac{1}{2}(0.4)(v_C^2 - 7^2) \Rightarrow v_C = 11.4 \text{ m/s}$$

c) **Does the block reach point D? If so, what is its speed there; if not, how far through the rough section does it travel?**

$$|w_{f_k}|_{\text{for the length } L} = \mu_k mgL = 0.7(4)(12) = 33.6 \text{ J}$$

$$K_C = \frac{1}{2}mv_C^2 = 25.8 \text{ J}$$

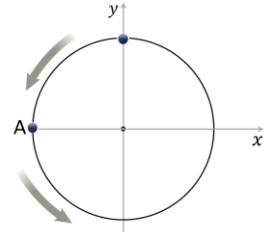
Since $K_C < |w_{f_k}|$ then the block will not reach point D, it will reach a point at distance d from the first edge of the rough portion and stops there.


$$K_C = |w_{f_k}|_{\text{for the length } d}$$

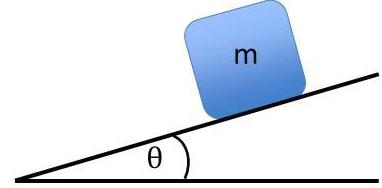
$$25.8 \text{ J} = \mu_k mgL = 0.7(4)(d) \Rightarrow d = 9.2 \text{ m}$$

Part III: Questions (Choose the correct answer, one point each)

Q1. A ball of mass $m = 0.15 \text{ kg}$ is thrown at an angle of $\theta = 45^\circ$ above the horizontal with an initial speed of $v_i = 12 \text{ m/s}$. At its highest point, the net force on it is:


- * zero
- * 10 N, up
- 1.5 N, down

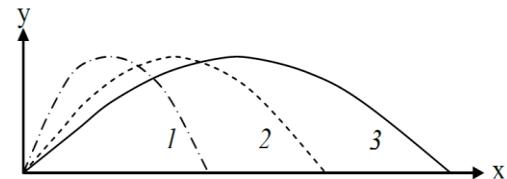
Q2. A particle moves **counterclockwise** with constant speed (v) around the circle of radius (r), as shown.


When it is at point A, its velocity (\vec{v}) and acceleration (\vec{a}) are:

- * $\vec{v} = v\hat{i}$, $\vec{a} = \frac{v^2}{r}\hat{i}$
- * $\vec{v} = -v\hat{j}$, $\vec{a} = -\frac{v^2}{r}\hat{i}$
- * $\vec{v} = v\hat{j}$, $\vec{a} = -\frac{v^2}{r}\hat{i}$

Q3. A block of mass m is at **rest** on an incline that makes an angle θ with the horizontal, as shown. **Which of the following statements about the magnitude of the static friction force is true?**

- * $f_s = mg\cos\theta$
- * $f_s < mg\sin\theta$
- * $f_s = mg\sin\theta$
- * $f_s > mg\sin\theta$



Q4. Which of the following **forces always produce zero work?**

- * radial force (\vec{F}_r) in a circular motion
- * tangential force (\vec{F}_T) in the circular motion
- * static frictional force (\vec{f}_s)
- * normal force (\vec{n})

Q5. The figure shows the trajectories of three projectiles. **Which trajectory has the greatest initial vertical component of velocity (V_{yi})?**

- * 1
- * 2
- * 3
- * All the same

