

Physics 101

Summer Semester
 Second Midterm Exam
 Sunday, August 29, 2021
 7:00 pm – 8:30 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Hala Al-Jassar
 Dr. Fatema Al Dosari
 Dr. Tareq Al Refai

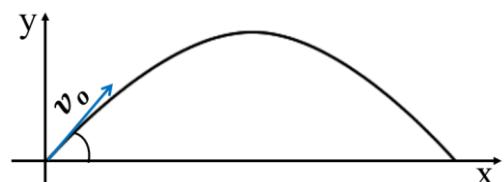
Dr. Belal Salameh
 Dr. Abdel Khaleq

For Instructors use only

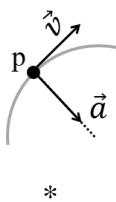
Grades:

#	Q1	Q2	Q3	Q4	Q5	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
Pts	1	1	1	1	1	3	3	3	3	3	5	5	30

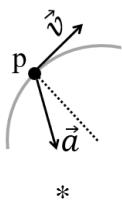
Important:

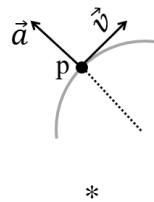
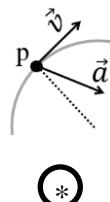

1. Answer all questions and problems (No solution = no points).
2. Full mark = 30 points as arranged in the above table.
3. Assume $g = 10 \text{ m/s}^2$.
4. Mobiles are **strictly prohibited** during the exam.
5. Programmable calculators, which can store equations, are not allowed.
6. Please write down your final answer in the box shown in each problem.
7. Cheating incidents will be processed according to the university rules.

GOOD LUCK


Part I: Questions (Choose the correct answer, 1 point each)

Q1. A projectile is fired, as shown. Which of the following statements is correct?

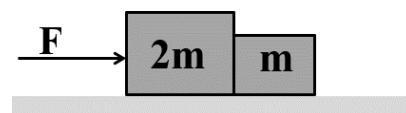

* $\Delta v_x = 0, \Delta v_y = 0$ * $\Delta v_x = 0, \Delta v_y = -g\Delta t$
 * $\Delta v_x = -g\Delta t, \Delta v_y = 0$ * $\Delta v_x = -g\Delta t, \Delta v_y = -g\Delta t$

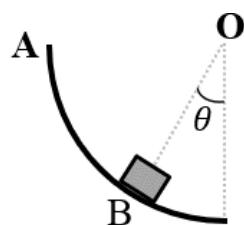


Q2. Which of the following figures describes the velocity and acceleration vectors of a speeding up particle moving through the point P on a curved path.

*

*

*


Q3. A woman with masss (m) stands on a bathroom scale in an elevator. While the elevator is accelerating downward, the scale reads (n)


* $n > mg$ * $n = mg$
 * $n < mg$ * $n = 0$

Q4. The figure shows two blocks of mass ($m_1 = 2m$) and ($m_2 = m$) acted on by an external horizontal force F . Assume that the surface is frictionless. Which of the following statements about the magnitude of the force that one block exerts on the other (F_{12}) is correct?

* $F_{12} = \frac{F}{3}$ * $F_{12} = \frac{2F}{3}$
 * $F_{12} = \frac{3F}{2}$ * $F_{12} = F$

Q5. A block of mass m is released from rest at point A, and slides down a frictionless surface in the shape of a quarter circle, as shown. As the block passes point B, which of the following is true about the magnitude of the normal force (n)?

* $n = mg \cos \theta$ * $n < mg \cos \theta$
 * $n > mg \cos \theta$ * $n = 0$

Part II: Short Problems (3 points each)

SP1. An object is thrown horizontally from the open window of a building. If the initial speed of the object is 20 m/s and it hits the ground 2 s later, from what height was it thrown?

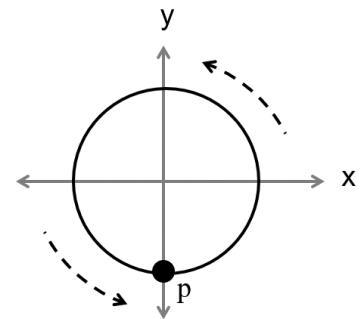
$$v_{y0} = 0, v_{x0} = 20 \text{ m/s}$$

$$y = y_0 + v_{y0}t - \frac{1}{2}gt^2$$

$$y = 0 + 0 - 5(2)^2 = -20 \text{ m}$$

$$h = 20 \text{ m}$$

Answer: $h = 20 \text{ m}$

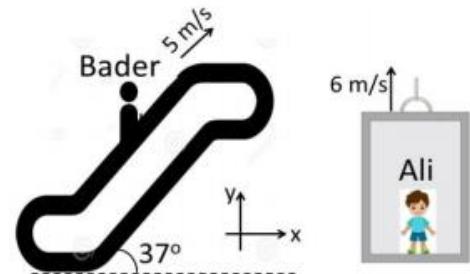

SP2. A particle moves with **constant speed** on a circle ($r = 2 \text{ m}$), as shown. The particle passes the point p at $t = 0 \text{ s}$ and completes one revolution in 20 s . **Find the particle's position, velocity and acceleration at $t = 15 \text{ s}$, in unit vector notation.**

After 15 sec, the particle is on the negative x-axis:

$$\vec{r} = -2\hat{i}$$

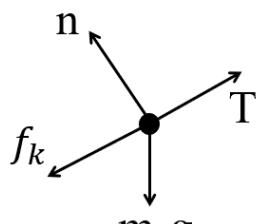
$$\vec{v} = -\frac{2\pi R}{T}\hat{j} = -\frac{2(3.14)(2)}{20}\hat{j} = -0.63\hat{j}$$

$$\vec{a} = \frac{v^2}{R}\hat{i} = \frac{0.63^2}{2}\hat{i} = 0.2\hat{i}$$

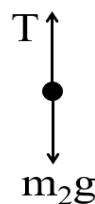

SP3. Bader rides an escalator which moves at a speed of 5 m/s and Ali rides an elevator which moves up at a speed of 6 m/s , as shown. **Find the speed of Bader with respect to Ali.**

$$\vec{v}_{A/G} = 6\hat{j} \text{ m/s}$$

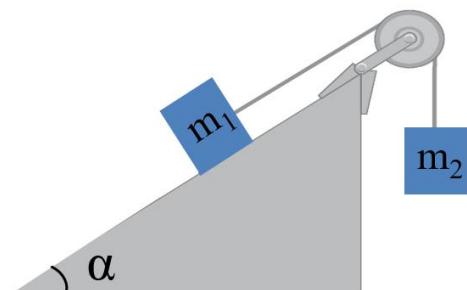
$$\vec{v}_{B/G} = 5 \cos(37^\circ)\hat{i} + 5 \sin(37^\circ)\hat{j} = (4\hat{i} + 3\hat{j}) \text{ m/s}$$


$$\vec{v}_{B/A} = \vec{v}_{B/G} - \vec{v}_{A/G} = (4\hat{i} - 3\hat{j}) \text{ m/s}$$

$$|\vec{v}_{B/A}| = \sqrt{(4)^2 + (3)^2} = 5 \text{ m/s}$$

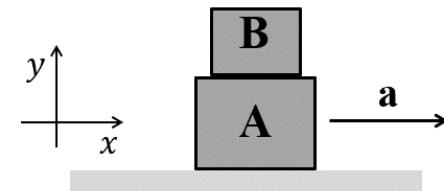


Answer: $|\vec{v}_{B/A}| = 5 \text{ m/s}$


SP4. Two blocks (m_1 and m_2) are connected by a light rope that passes over a massless pulley as shown. The surface of the incline is **rough** and m_2 moves downward. **Draw two free-body diagrams, one for m_1 and one for m_2 .**

For m_1

For m_2



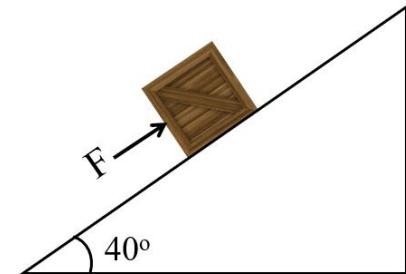
SP5. In the figure, block A has mass $m_A = 25 \text{ Kg}$ and block B has mass $m_B = 10 \text{ Kg}$. Both blocks move with constant acceleration $a = 2 \text{ m/s}^2$ to the right. The coefficient of static friction between the two blocks is $\mu_s = 0.8$. Find the magnitude and direction of the static frictional force acting on block B.

$$f_s = m_B a = 10 (2) = 20 \text{ N}$$

$$|f_s| = 20 \text{ N}$$

Direction: to the right

Answer: $20\hat{i} \text{ N}$


Part III: Long Problems (5 points each)

LP1. A block ($M = 20 \text{ Kg}$) is pushed by a force ($F = 50 \text{ N}$), as shown. The surface is rough ($\mu_s = 0.4$, $\mu_k = 0.3$).

a) What is the magnitude of the normal force acting on the block?

$$n = mg \cos \theta$$

$$n = 200 \cos (40^\circ) = 153.2 \text{ N}$$

Answer: $n = 153.2 \text{ N}$

b) What is the magnitude and direction of the acceleration of the block?

$$m g \sin \theta - F - f_k = m a$$

$$200 \sin(40^\circ) - 50 - \mu_k(153.2) = 20 a$$

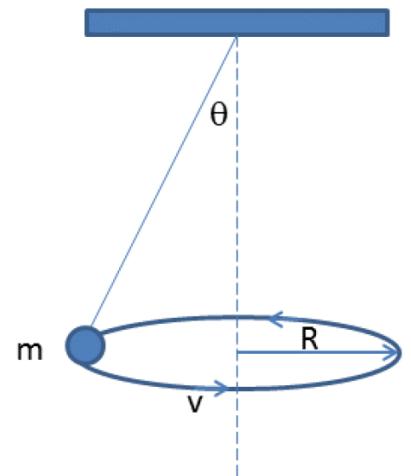
$$a = 1.6 \text{ m/s}^2 \text{ down the incline}$$

Answer : $a = 1.6 \text{ m/s}^2$
down the incline

c) If the applied force is removed, then the magnitude of the block's acceleration will

* increase

* decrease


* stay the same

LP2. For the canonical pendulum shown in the figure, a bob of mass ($m = 0.2 \text{ Kg}$) is attached to a string and rotates in a **horizontal** circle with **constant speed** ($v = 0.8 \text{ m/s}$). The string makes an angle ($\theta = 15^\circ$) with the vertical.

a) **What is the tension in the string?**

$$T \cos \theta = mg$$

$$T = \frac{mg}{\cos \theta} = \frac{2}{\cos 15^\circ} = 2.1 \text{ N}$$

Answer: $T = 2.1 \text{ N}$

b) **What is the radius of the circle?**

$$T \sin \theta = \frac{mv^2}{R}$$

$$R = \frac{mv^2}{T \sin \theta} = \frac{0.2 (0.8)^2}{2.1 \sin(15^\circ)} = 0.24 \text{ m}$$

Answer: $R = 0.24 \text{ m}$

c) **The net force acting on the bob equals:**

Ⓐ $F_{net} = \frac{mv^2}{R}$

* $F_{net} = T - mg$

* $F_{net} = T \cos \theta$

* $F_{net} = 0$