

Physics 101

Summer Semester
 Second Midterm Exam
 Wednesday, July 10, 2019
 6:30 pm - 8:00 pm

Student's Name: Social Number:

Student's Number: Section:

Choose your Instructor's Name:

Prof. Yacoub Makdisi
 Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar

Dr. Tareq Al Refai
 Dr. Belal Salameh

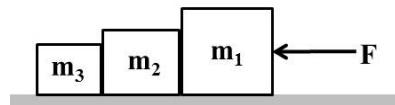
Grades:

Instructors use only

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
Pts				1	2	2	2	2	2	3	3	20

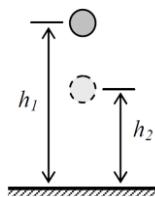
Important:

1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. **Cheating incidents will be processed according to the university rules.**

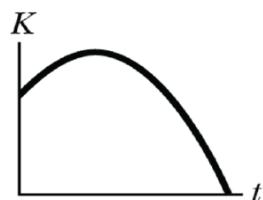

GOOD LUCK

Part I: Questions (1 point each)

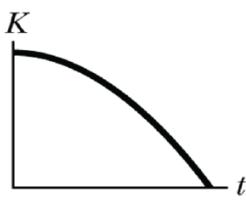
- Q1.** Three boxes ($m_1 > m_2 > m_3$) are in contact on a rough horizontal surface as shown in the figure. A constant horizontal force acts on block 1 and the system moves to the left at a constant speed. Which box has the lowest net force?

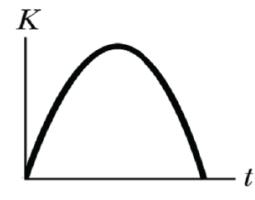
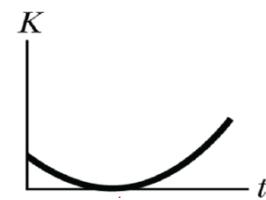

* box 1 * box 2 * box 3

All the same

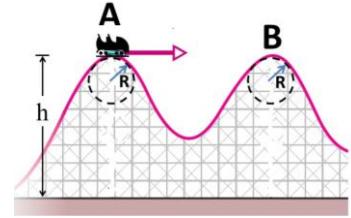


- Q2.** A ball of mass m is dropped from a height h_1 . It strikes the floor and rebounds to a maximum height h_2 ($h_2 < h_1$). The work done on the ball by gravity equals:


$mg(h_1 - h_2)$ * $mg(h_2 - h_1)$ * mgh_1 * zero



- Q3.** A stone is thrown vertically up from the top of a high building and return back to the ground. Which graph describes the kinetic energy K of the stone during its free fall?

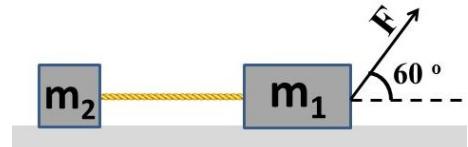
*


*

*

- Q4.** A car slides on a frictionless track starting from point A with a speed of v_A and reaches point B with a speed of v_B . Point A and point B have the same height (h). The track at points A and B is a part of a circle of radius R as shown in the figure.

The normal force on the car at point B equals:


* $m\left(\frac{v_B^2}{R} - g\right)$ * mg * $m\left(\frac{v_A^2}{R} - g\right)$ $m\left(g - \frac{v_A^2}{R}\right)$

Part II: Short Problems (2 points each)

- SP1.** Two blocks ($m_1 = 15 \text{ kg}$, $m_2 = 5 \text{ kg}$) on a frictionless horizontal surface are connected by a light rope. A constant force $F = 80 \text{ N}$ is applied to m_1 as shown in the figure. Find the acceleration (in m/s^2) of the system.

$$F \cos(60^\circ) = (m_1 + m_2)a$$

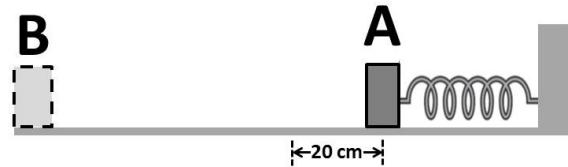
$$a = \frac{F \cos(60^\circ)}{(m_1 + m_2)} = \frac{80 \cos(60^\circ)}{20} = 2 \text{ m/s}^2$$

Answer: $a = 2 \text{ m/s}^2$

SP2. Find the apparent weight (in N) of a 70 kg man standing in an elevator, if the elevator is moving upward and slowing down at a rate of 2 m/s^2 .

$$mg - n = ma$$

$$n = m(g - a) = 70(10 - 2) = 560 \text{ N}$$

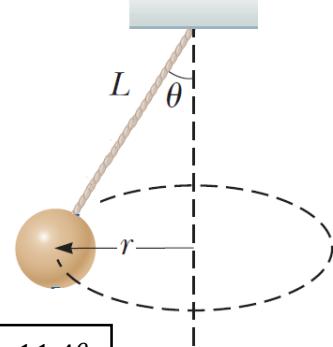

Answer: $n = 560 \text{ N}$

SP3. A 2 kg block on a rough horizontal surface ($\mu_k = 0.3$) is attached to a spring of force constant $k = 450 \text{ N/m}$. The spring is compressed a distance of 20 cm (at point A) and is released from rest at point A as shown in the figure. The block leaves the spring and stops at point B. Find the distance (in m) between points A and B.

$$\sum W = \Delta K$$

$$\frac{1}{2}kx^2 - \mu_k mgd = 0$$

$$\Rightarrow d = \frac{\frac{1}{2}kx^2}{\mu_k mg} = \frac{\frac{1}{2}(450)(0.2)^2}{(0.3)(2)(10)} = 1.5 \text{ m}$$

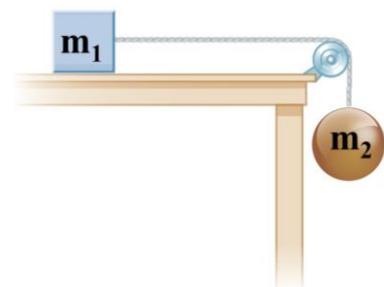

Answer: $d = 1.5 \text{ m}$

SP4. The bob of a conical pendulum rotates with a **constant speed of 1.1 m/s in a horizontal circle of radius $r = 0.6 \text{ m}$ as shown in the figure. Find the angle (θ) between the rope and the vertical axis.**

$$T \sin(\theta) = m \frac{v^2}{r}$$

$$T \cos(\theta) = mg$$

$$\Rightarrow \tan(\theta) = \frac{v^2}{rg} = \frac{(1.1)^2}{6} \Rightarrow \theta = 11.4^\circ$$

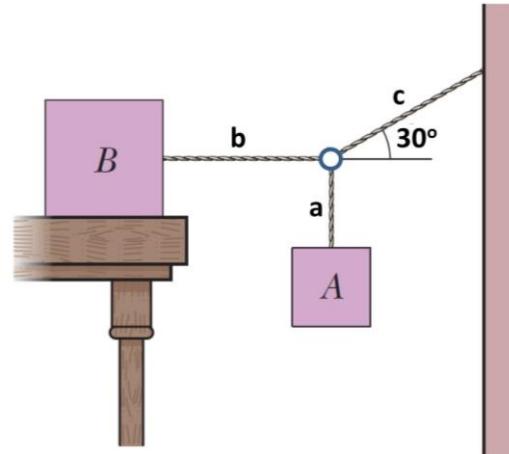

Answer: $\theta = 11.4^\circ$

SP5. A block ($m_1 = 6 \text{ kg}$) rests on a **frictionless horizontal surface is attached to a ball ($m_2 = 4 \text{ kg}$) by a massless rope that passes over a light frictionless pulley as shown in the figure. If the system is released from rest, find the speed (in m/s) of the ball when it has fallen 0.5 m.**

$$E_f = E_i$$

$$\frac{1}{2}(m_1 + m_2)v^2 = m_2gh$$

$$v = \sqrt{\frac{2m_2gh}{m_1 + m_2}} = 2 \text{ m/s}$$


Answer: $v = 2 \text{ m/s}$

Part III: Long Problems (3 points each)

LP1. Two blocks ($m_A = 20 \text{ kg}$ and $m_B = 50 \text{ kg}$) are connected by light ropes through a light O ring as shown in the figure. **Block B is stationary on the rough table and rope b remains horizontal.**

- a) **Find the tension (in N) in rope a.**

$$T_a = m_A g = 200 \text{ N}$$

Answer: $T_a = 200 \text{ N}$

- b) **Find the tension (in N) in rope b and in rope c.**

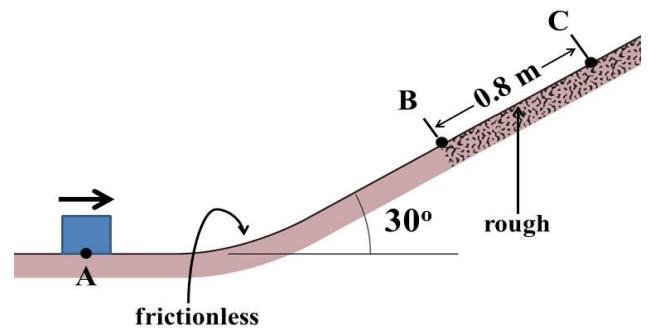
$$T_a = T_c \sin(30^\circ) \Rightarrow T_c = \frac{T_a}{\sin(30^\circ)} = 400 \text{ N}$$

$$T_b = T_c \cos(30^\circ) = 346.4 \text{ N}$$

Answer: $T_c = 400 \text{ N}$

Answer: $T_b = 346.4 \text{ N}$

- c) **Find the minimum coefficient of static friction between block B and the table required to prevent block B from motion.**


$$T_b = (f_s)_{max} = \mu_s m_B g \Rightarrow \mu_s = \frac{T_b}{m_B g} = \frac{346.4}{500} = 0.69$$

Answer: $\mu_s = 0.69$

- LP2.** A 4 kg block starts from point A with a speed of 8 m/s and slides along a frictionless track until point B. The region after point B is rough ($\mu_k = 0.4$). The block reaches point C and stops there.

- a. Find the total work (in J) done on the block between points A and C.

$$\begin{aligned}\sum W &= \Delta K = \frac{1}{2}m(V_C^2 - V_A^2) \\ &= \frac{1}{2}(4)(0 - 64) = -128 J\end{aligned}$$

Answer: $\sum W = -128 J$

- b. Find the work (in J) done on the block by friction.

$$W_{f_k} = -f_k L = -\mu_k mg \cos(30^\circ) L = -0.4(4)(10)\cos(30^\circ)(0.8) = -11.1 J$$

Answer: $W_{f_k} = -11.1 J$

- c. Find the speed (in m/s) of the block at point B.

$$E_C - E_B = W_{f_k}$$

$$mgL \sin(30^\circ) - \frac{1}{2} mV_B^2 = -11.1$$

$$V_B = \sqrt{\frac{2}{m}(mgL \sin(30^\circ) - 11.1)} = 1.57 \text{ m/s}$$

Answer: $V_B = 1.57 \text{ m/s}$