

Physics 101

Summer Semester
 Second Midterm Exam
 Monday, July 09, 2018
 6:00 pm - 7:30 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Hala Al-Jassar
 Dr. Fatema Al Dosari

Dr. Tareq Al Refai
 Dr. Abdulkhaleq
 Dr. Belal Salameh

Grades:

For Instructors use only

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
	1		1	1	2	2	2	2	2	3	3	20
Pts												

Important:

1. Answer all questions and problems.

2. Full mark = 20 points as arranged in the above table.

- i) 4 Questions
- ii) 5 Short Problems
- iii) 2 Long Problems.

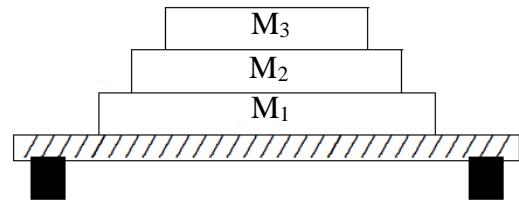
3. No solution = no points.

4. **Use correct units.**

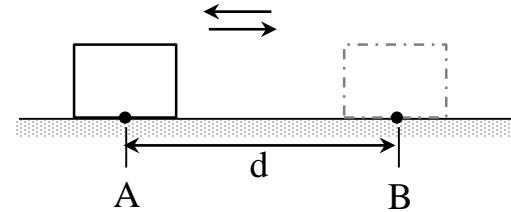
5. Check the correct answer for each question.

6. Assume $g = 10 \text{ m/s}^2$.

7. Mobiles are **strictly prohibited** during the exam.


8. Programmable calculators, which can store equations, are not allowed.

9. **Cheating incidents will be processed according to the university rules.**


GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)**Q1.** Three blocks (M_1 , M_2 , and M_3) rest on a table. **The table exerts a normal force**

- * on all three masses.
- * only on M_1 .
- * only on M_2 .
- * upward on M_1 and downward on M_2 .

Q2. When a box of mass m is pushed a distance **d** (from point A to point B) along a surface with coefficient of kinetic friction μ_k , then pushed back (from point B to point A) along the same path, **the work done by friction is**

- * 0.
- * $-\mu_k mgd$.
- * $-2\mu_k mgd$.
- * $+2\mu_k mgd$.

Q3. The **apparent weight (Normal force)** of a man in an elevator is **greatest** when the elevator

- * moves downward at constant velocity.
- * moves upward at constant velocity.
- * accelerates downward.
- * accelerates upward.

Q4. As an object moves from point A to point B with **only two forces act on it**: one force is **non-conservative** and does **-30 J** of work, the other force is **conservative** and does **+50 J** of work. Then between A and B,

- * the kinetic energy of the object increases, and the mechanical energy decreases.
- * the kinetic energy of the object decreases, and the mechanical energy decreases.
- * the kinetic energy of the object decreases, and the mechanical energy increases.
- * the kinetic energy of the object increases, and the mechanical energy increases.

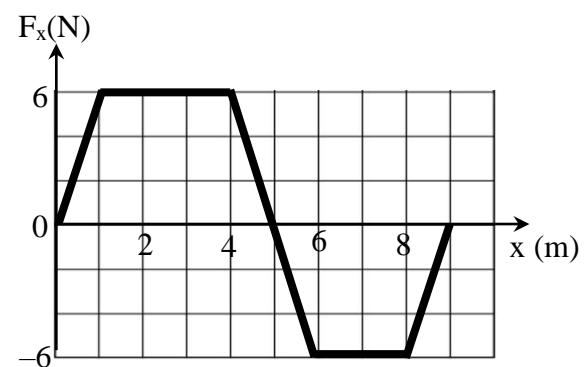
Part II: Short Problems (2 points each)**SP1.** If the only forces acting on a 2 kg box are $\vec{F}_1 = (3\hat{i} - 9\hat{j})\text{N}$ and $\vec{F}_2 = (5\hat{i} + 3\hat{j})\text{N}$, **what is the magnitude of the acceleration (in m/s^2) of the box?**

$$\vec{F}_1 + \vec{F}_2 = m\vec{a}$$

$$\vec{a} = \frac{(3\hat{i} - 9\hat{j}) + (5\hat{i} + 3\hat{j})}{2}$$

$$\vec{a} = (4\hat{i} - 3\hat{j})\text{m/s}^2$$

$$a = \sqrt{4^2 + 3^2} = 5 \text{ m/s}^2$$


Answer: 5 m/s^2

SP2. A 2 Kg object moving along the x axis is acted upon by a force F_x that varies with position as shown. **How much work (in J) is done by this force as the object moves from $x = 2$ m to $x = 8$ m?**

$$w = \int_2^8 F_x \, dx = \text{Area under the curve}$$

$$w = 2 \times 6 + \frac{1}{2}(1)(6) + \frac{1}{2}(1)(-6) + 2(-6)$$

$$w = 0 \text{ J}$$

Answer: $w = 0 \text{ J}$

SP3. In the figure, the coefficient of kinetic friction between the surface and the 2 Kg block is 0.2, and the coefficient of kinetic friction between the surface and the 1 kg block is 0.3. **What is the acceleration (in m/s^2) of the system?**

$$F - f_{k_1} - f_{k_2} = (m_1 + m_2)a$$

$$F - \mu_{k_1} m_1 g - \mu_{k_2} m_2 g = (m_1 + m_2)a$$

$$a = \frac{F - \mu_{k_1} m_1 g - \mu_{k_2} m_2 g}{m_1 + m_2} = \frac{10 - 0.3(1)(10) - (0.2)(2)(10)}{3} = 1 \text{ m/s}^2$$

Answer: $a = 1 \text{ m/s}^2$

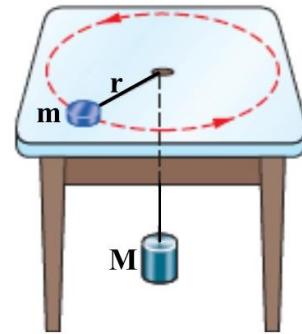
SP4. As a particle moves along the x axis it is acted upon by a single conservative force given by $F_x = (20 - 4x)$ N where x is in m. The potential energy associated with this force has the value +30 J at the origin (x = 0 m). **Find the potential energy (in J) at x = 4 m.**

$$w = -\Delta U$$

$$\int_0^4 (20 - 4x) \, dx = -[U(4 \text{ m}) - 30]$$

$$20x - 2x^2 \Big|_0^4 = -U(4 \text{ m}) + 30$$

$$U(4 \text{ m}) = -18 \text{ J}$$


Answer: $U(4 \text{ m}) = -18 \text{ J}$

SP5. A disc ($m=1.5$ Kg) rotates in a circle of radius $r = 0.24$ m on a **frictionless** table while attached to a hanging cylinder of mass $M = 2.5$ Kg by a cord that extends through a hole in the table as shown. **What is the speed (in m/s) of the disc that keeps the cylinder at rest?**

$$F_r = T = \frac{mv^2}{R} = Mg$$

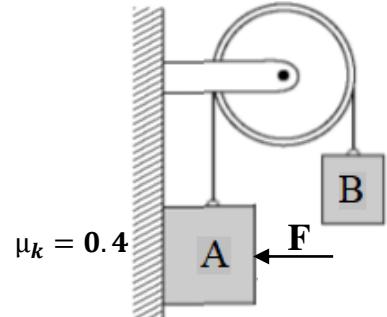
$$Mg = \frac{mv^2}{R}$$

$$v = \sqrt{\frac{MgR}{m}} = \sqrt{\frac{25 \times 0.24}{1.5}} = 2 \text{ m/s}$$

Answer: $v = 2 \text{ m/s}$

Part III: Long Problems (3 points each)

LP1. Block **A** of mass 5 Kg and block **B** are attached to a rope which passes over a massless and frictionless pulley as shown in the figure. A force $F = 50$ N is applied horizontally to block **A**, **keeping it in contact with a rough vertical wall**. The coefficient of kinetic friction between the wall and block A is $\mu_k = 0.4$. **Block A moves upward with an acceleration of $a = 2 \text{ m/s}^2$.**


a) **What is the tension (in N) in the cord?**

$$T - m_A g - f_k = m_A a$$

$$f_k = \mu_k n = \mu_k F$$

$$T = m_A(g + a) + \mu_k F$$

$$T = 5(10 + 2) + (0.4)(50) = 80 \text{ N}$$

Answer: $T = 80 \text{ N}$

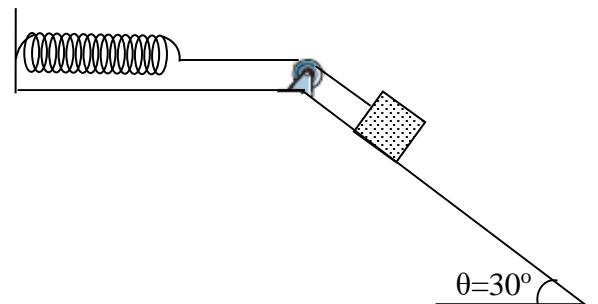
b) **What is the mass (in kg) of block B?**

$$m_B g - T = m_B a$$

$$m_B = \frac{T}{(g-a)} = \frac{80}{8} = 10 \text{ kg}$$

Answer: $m_B = 10 \text{ kg}$

LP2. A 6 Kg box on a **frictionless** incline of angle $\theta = 30^\circ$ is connected, by a light cord that runs over a massless and frictionless pulley, to a spring of spring constant $k = 150 \text{ N/m}$, as shown in the figure. The box is released **from rest when the spring is unstretched**.


a) **What is the speed (in m/s) of the block when it has moved 0.2 m down the incline?**

$$E_i = E_f$$

$$mg(0.2) \sin \theta = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$$

$$6 = 3v^2 + 3$$

$$v = 1 \text{ m/s}$$

Answer: $v = 1 \text{ m/s}$

b) **How far down the incline (in m) from its point of release does the box slide before it momentarily stops?**

$$E_i = E_f$$

$$mgx \sin \theta = \frac{1}{2} kx^2$$

$$x = \frac{mg \sin \theta}{\frac{1}{2} k} = 0.4 \text{ m}$$

Answer: $x = 0.4 \text{ m}$

c) **At the instant the box momentarily stops down the incline, its acceleration is**

Up the incline

- Down the incline
- zero