

Physics 101

Summer Semester
 First Midterm Exam
 Saturday, July 2, 2022
 9:00 AM – 10:30 AM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Abdul Khaleq
 Dr. Belal Salameh
 Dr. Fatema Al Dosari

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	SP6	LP1	LP2	Q1	Q2	Q3	Q4	Q5	Total
Pts	2	2	2	2	2	2	4	4	1	1	1	1	1	25

Important:

1. Answer all questions and problems (No solution = no points).
2. Full mark = 25 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK

Part I: Short Problems (2 points each)

SP1. A particle moves along the positive x-axis with **constant acceleration**. It starts moving **from the origin** with a speed of 3 m/s and **reaches $x = 8 \text{ m}$ after 2 s** . Find the particle's acceleration.

$$\Delta x = v_{xi}t + \frac{1}{2}a_x t^2$$

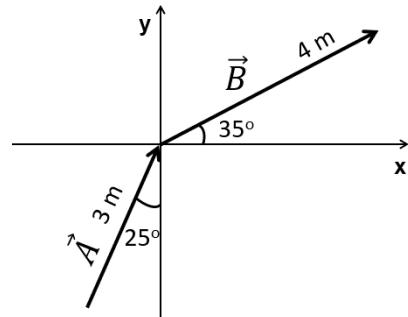
$$8 = 3(2) + \frac{1}{2}a_x(2)^2$$

$$a_x = 1 \text{ m/s}^2$$

SP2. A particle moves along the x-axis. Its position is given by $x(t) = t^3 - 12t$, where x is in m and t is in s . Find the acceleration of the particle when it changes its direction of motion.

$$v_x(t) = \frac{dx}{dt} = 3t^2 - 12$$

$$v_x(t) = 3t^2 - 12 = 0 \Rightarrow t = 2\text{s}$$


$$a_x(t) = \frac{dv_x}{dt} = 6t$$

$$a_x(t = 2\text{s}) = 6(2) = 12 \text{ m/s}^2$$

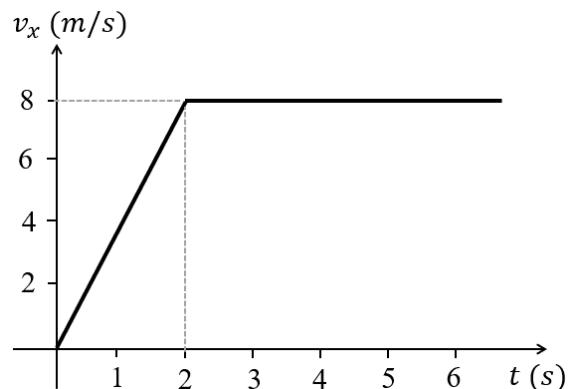
SP3. Vectors \vec{A} and \vec{B} lie in the xy-plane, as shown. Find $\vec{A} \times \vec{B}$.

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \varphi = (3)(4) \sin (30^\circ) = 6$$

$$\vec{A} \times \vec{B} = -6 \hat{k}$$

SP4. A particle is moving in the xy-plane. Its position is given by $x(t) = 3t^2 - 6t$, $y(t) = -4t^3 + 36t$, where x and y are in m and t is in s . **Find the speed of the particle at $t = 2 s$.**

$$v_x(t) = \frac{dx}{dt} = 6t - 6 \Rightarrow v_x(t = 2 s) = 6 \text{ m/s}$$


$$v_y(t) = \frac{dy}{dt} = -12t^2 + 36 \Rightarrow v_y(t = 2 s) = -12 \text{ m/s}$$

$$v(t = 2 s) = \sqrt{6^2 + (-12)^2} = 13.4 \text{ m/s}$$

SP5. The velocity of a particle moving along the x-axis as a function of time is shown. **Find the average speed of the particle between $t = 0 s$ and $t = 5 s$ is:**

$$d = \text{Area} = \frac{1}{2}(2)(8) + (3)(8) = 32 \text{ m}$$

$$v_{av} = \frac{d}{t} = \frac{32}{5} = 6.4 \text{ m/s}$$

SP6. A car starts from the origin and moves 25 km west in 10 minutes, then 40 km in a direction 37° north of west in 20 minutes. **Find the average velocity of the car in unit vector notation.**

$$\vec{A} = -25\hat{i} \text{ km}$$

$$\vec{B} = -40 \cos(37^\circ) \hat{i} + 40 \sin(37^\circ) \hat{j} = (-32\hat{i} + 24.1\hat{j}) \text{ km}$$

$$\vec{R} = \vec{A} + \vec{B} = (-57\hat{i} + 24.1\hat{j}) \text{ km}$$

$$\vec{v}_{av} = \frac{\vec{R}}{t} = \frac{(-57\hat{i} + 24.1\hat{j})}{30} = (-114\hat{i} + 48.2\hat{j}) \text{ km/hr}$$

Part II: Long Problems (4 points each)

LP1. Two vectors are given by: $\vec{A} = 3\hat{i} - 4\hat{j} + 2\hat{k}$ and $\vec{B} = 2\hat{i} + 6\hat{j} - 4\hat{k}$

a) Find the angle between \vec{A} and \vec{B} .

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos (\varphi)$$

$$\varphi = \cos^{-1} \left(\frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \right) = \cos^{-1} \left(\frac{(3)(2) + (-4)(6) + (2)(-4)}{\sqrt{9+16+4} \sqrt{4+36+16}} \right) = \cos^{-1} \left(\frac{-26}{\sqrt{29} \sqrt{56}} \right) = 130.2^\circ$$

b) Find $|2\vec{A} - \vec{B}|$.

$$2\vec{A} - \vec{B} = 2(3\hat{i} - 4\hat{j} + 2\hat{k}) - (2\hat{i} + 6\hat{j} - 4\hat{k}) = (6\hat{i} - 8\hat{j} + 4\hat{k}) - (2\hat{i} + 6\hat{j} - 4\hat{k}) = (4\hat{i} - 14\hat{j} + 8\hat{k})$$

$$|2\vec{A} - \vec{B}| = \sqrt{4^2 + 14^2 + 8^2} = 16.6$$

c) If $\vec{C} = 2\hat{i} + C_y\hat{j}$ and \vec{C} is perpendicular to \vec{A} , find the value of C_y .

$$\vec{A} \cdot \vec{C} = (3)(2) + (-4)(C_y) = 0 \Rightarrow C_y = 1.5$$

LP2. A stone is thrown **vertically upward** from point A and reaches the maximum height (at point B), then hits the roof (at point C), as shown. The stone moves from point A to point C in 2s.

a) **Find the initial speed of the stone (at point A).**

(From the ground to the roof)

$$\Delta y = v_{y_i} t - \frac{1}{2} g t^2$$

$$12 = v_{y_i}(2) - 5(2^2) \Rightarrow v_{y_i} = 16 \text{ m/s}$$

b) **Find the maximum height (h_{max}) of the stone.**

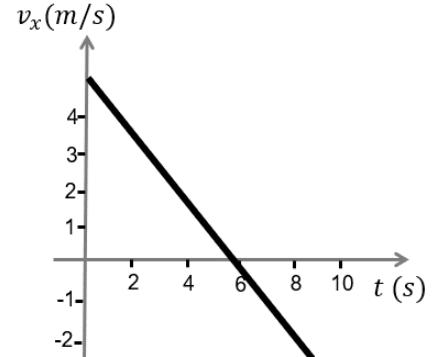
(From the ground to the maximum height)

$$v_{y_f}^2 = v_{y_i}^2 - 2g\Delta y$$

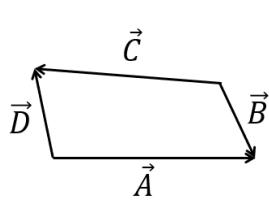
$$0 = 16^2 - 20 h_{max} \Rightarrow h_{max} = 12.8 \text{ m}$$

c) **Find the time needed for the stone to reach its maximum height.**

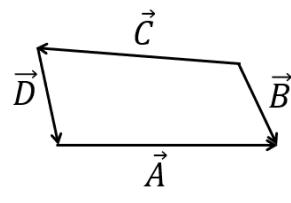
(From the ground to the maximum height)

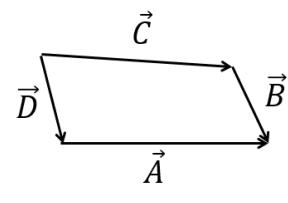

$$v_{y_f} = v_{y_i} - gt$$

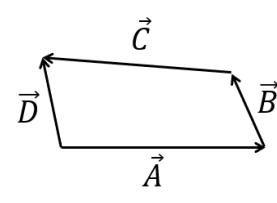
$$0 = 16 - 10t \Rightarrow t = 1.6 \text{ s}$$


Part III: Questions (Choose the correct answer, one point each)

Q1. The velocity of a particle moving along the x-axis as a function of time is shown. The speed of this particle is:

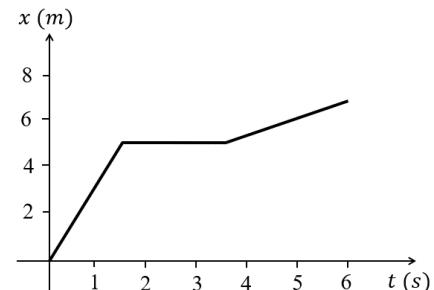

decreasing then increasing.
 increasing then decreasing.
 always increasing.
 always decreasing.


Q2. The figure which satisfies the relation $\vec{A} = \vec{B} - \vec{C} - \vec{D}$ is:

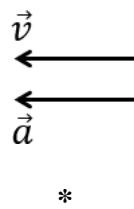

*

*

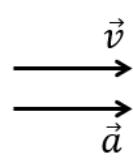
*

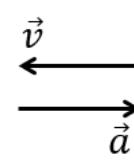

*

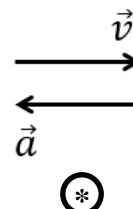
Q3. If $\vec{A} = a\hat{i} + b\hat{j} - c\hat{k}$ and $\vec{B} = -2a\hat{i} - 2b\hat{j} + 2c\hat{k}$, where a, b , and c are constants. The angle between \vec{A} and \vec{B} is

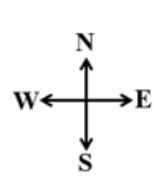

zero 90° 180° 270°

Q4. The position of a particle moving along the x-axis as a function of time is shown. The average acceleration of the particle between $t = 1\text{ s}$ and $t = 5\text{ s}$ is:


negative positive
 Zero cannot be determined


Q5. The velocity and the acceleration vectors for 4 moving particles, at one instant, are shown. Which of the following represents the particle which moves to the east and slows down?


*


*

*

*

