

Physics 101

Summer Semester
 First Midterm Exam
 Sunday, June 24, 2018
 6:00 pm - 7:30 pm

Student's Name: Section Number:

Student's Number: Section:

Choose your Instructor's Name:

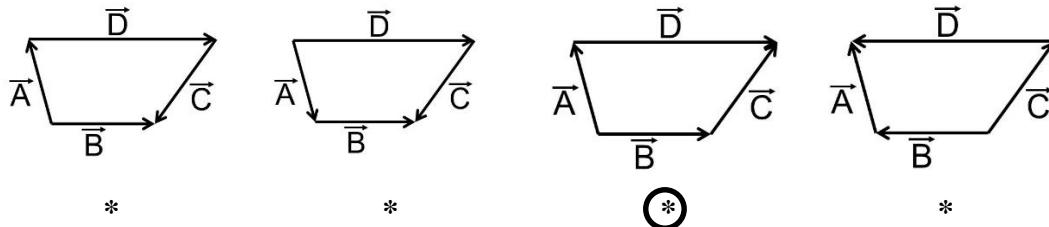
Dr. Hala Al-Jassar
 Dr. Fatema Al Dosari

Dr. Tareq Al Refai
 Dr. Abdul Khaleq
 Dr. Belal Salameh

Grade:

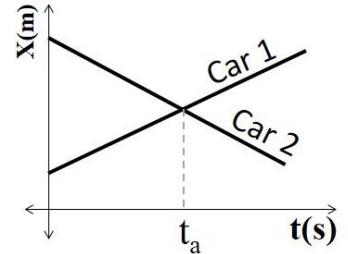
For Instructors use only

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1			1	1	2	2	2	2	2	3	3	20
1												

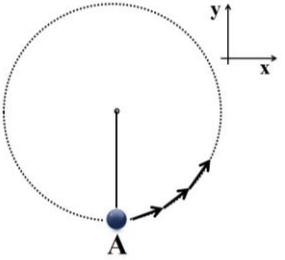

Important:

1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use correct units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Cheating incidents will be processed according to the university rules.**

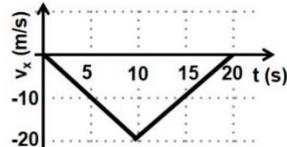
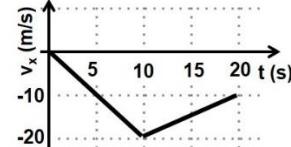
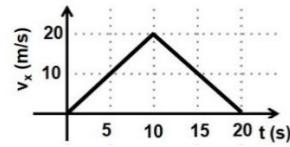
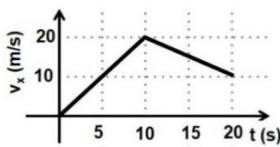
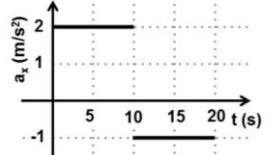
GOOD LUCK


Part I: Questions (Choose the correct answer, one point each)

Q1. Which of the following figures satisfies the relation $\vec{A} = \vec{B} + \vec{C} - \vec{D}$


Q2. The position versus time graph of two cars that are moving **along the x axis** on two parallel lanes is shown in the figure. At the time t_a , the two cars have:

- * same position, same velocity and different acceleration.
- * same position, same velocity and same acceleration.
- * same position, different velocity and different acceleration.
- same position, different velocity and same acceleration.






Q3. A particle is moving with **constant speed v** in a circle of radius R as shown in the figure. The velocity \vec{v} and the acceleration \vec{a} of the particle **at point A** are:

- * $\vec{v} = v\hat{i}$ and $\vec{a} = -\frac{v^2}{R}\hat{u}$
- $\vec{v} = v\hat{i}$ and $\vec{a} = \frac{v^2}{R}\hat{j}$
- * $\vec{v} = -v\hat{i}$ and $\vec{a} = -\frac{v^2}{R}\hat{j}$
- * $\vec{v} = v\hat{j}$ and $\vec{a} = \frac{v^2}{R}\hat{i}$

Q4. An object **starts from rest** and then moves along the x-axis, its **acceleration versus time** is shown in the figure.

Which of the following figures represents its velocity versus time?

○

*

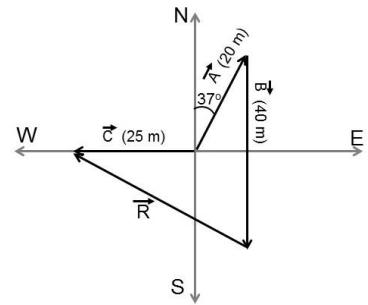
*

*

Part II: Short Problems (2 points each)

SP1. The position of a particle moving along the x-axis is given by $x(t) = t^3 - 4t$, where x is measured in m and t is measured in s. Calculate the average acceleration (in m/s^2) of the particle in the time interval from $t=2 \text{ s}$ to $t=4 \text{ s}$.

$$v_x(t) = \frac{dx}{dt} = 3t^2 - 4$$


$$a_{\text{av}-x} = \frac{\Delta v_x}{\Delta t} = \frac{v_x(4s) - v_x(2s)}{2}$$

$$= \frac{44 - 8}{2} = 18 \text{ m/s}^2$$

Answer: $a_{\text{av}-x} = 18 \text{ m/s}^2$

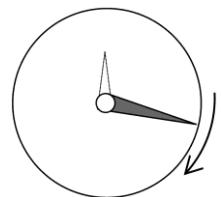
SP2. A man starts moving from his house. He moves 20 m at 37° east of north then 40 m due south. **Find the distance (in m) between the man and his car which is 25 m to the west from his house.**

$$\begin{aligned}\vec{A} &= (20 \sin(37^\circ) \hat{i} + 20 \cos(37^\circ) \hat{j}) \text{ m} \\ &= (12 \hat{i} + 16 \hat{j}) \text{ m} \\ \vec{B} &= -40 \hat{j} \text{ m} \\ \vec{C} &= -25 \hat{i} \text{ m} \\ \vec{R} &= \vec{C} - \vec{A} - \vec{B} = [(-25 - 12) \hat{i} + (40 - 16) \hat{j}] \text{ m} \\ &= (-37 \hat{i} + 24 \hat{j}) \text{ m} \\ |\vec{R}| &= \sqrt{(-37)^2 + (24)^2} = 44.1 \text{ m}\end{aligned}$$

Answer: $|\vec{R}| = 44.1 \text{ m}$

SP3. Four vectors $\vec{A} = 3\hat{j} - 2\hat{k}$, $\vec{B} = -3\hat{i}$, $\vec{C} = 4\hat{i} + 2\hat{j}$, and $\vec{D} = \vec{A} \times \vec{B}$. **Find the angle between \vec{C} and \vec{D} .**

$$\begin{aligned}\vec{D} &= \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & -2 \\ -3 & 0 & 0 \end{vmatrix} \\ &= 6\hat{j} + 9\hat{k}\end{aligned}$$

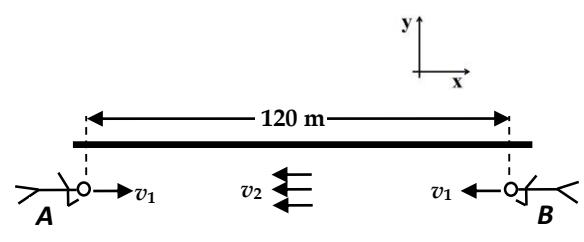

$$\begin{aligned}\theta &= \cos^{-1} \left(\frac{\vec{C} \cdot \vec{D}}{|\vec{C}| |\vec{D}|} \right) \\ &= \cos^{-1} \left(\frac{2(6)}{\sqrt{16 + 4\sqrt{36 + 81}}} \right) = 75.6^\circ\end{aligned}$$

Answer: $\theta = 75.6^\circ$

SP4. The minute arm of a clock is 30 cm in length. **Find the centripetal acceleration (in m/s^2) of the tip of the arm.**

$$v = \frac{2\pi R}{T} = \frac{2(3.14)(0.3)}{60} = 0.0314 \text{ m/s}$$

$$a_c = \frac{v^2}{R} = \frac{(0.0314)^2}{0.3} = 3.29 \times 10^{-3} \text{ m/s}^2$$


Answer: $a_c = 3.29 \times 10^{-3} \text{ m/s}^2$

SP5. Two swimmers **A** and **B** start at two opposite points that are **120 m apart**, as shown in figure. **A** swims due east, while **B** swims due west. Both swimmers swim at a **constant velocity** $v_1 = 3 \text{ m/s}$ relative to the river. The river has a constant velocity $v_2 = 1 \text{ m/s}$ due west relative to the ground. **Find the distance (in m) swum by A when he meets B in the river.**

$$\vec{v}_{A/G} = 2\hat{i} \text{ m/s} \quad \vec{v}_{B/G} = -4\hat{i} \text{ m/s}$$

$$t = \frac{d}{|\vec{v}_{A/G}| + |\vec{v}_{B/G}|} = \frac{120}{6} = 20 \text{ s}$$

$$d_A = |\vec{v}_{A/G}| t = 2(20) = 40 \text{ m}$$

Answer: $d_A = 40 \text{ m}$

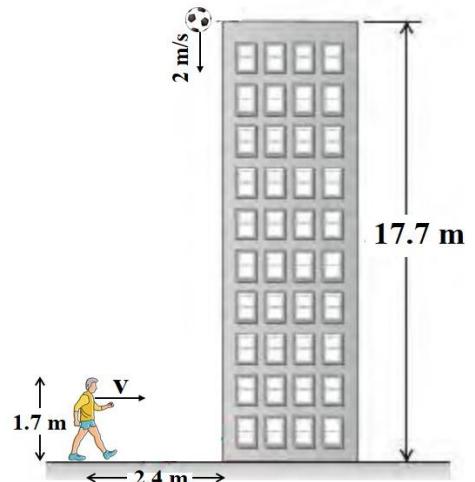
Part III: Long Problems (3 points each)

LP1. A ball is **thrown downward** with a speed of 2 m/s from the roof of a 17.7 m tall building. A man who is 1.7 m tall was 2.4 m away from the building when the ball is thrown. If the man is walking alongside the building at a **constant speed** v as shown in the figure.

a) **What must be the speed of the man (v) (in m/s) so that the ball will be dropped on his head?**

For the ball

$$\Delta y = -16 \text{ m}$$


$$\Delta y = v_{yi} t - \frac{1}{2} g t^2$$

$$-16 = -2t - 5t^2$$

$$\Rightarrow t = 1.6 \text{ s}$$

For the man

$$v = \frac{d}{t} = \frac{2.4}{1.6} = 1.5 \text{ m/s}$$

Answer: $v = 1.5 \text{ m/s}$

b) **What is the velocity (in m/s) of the ball just before it touches the man's head?**

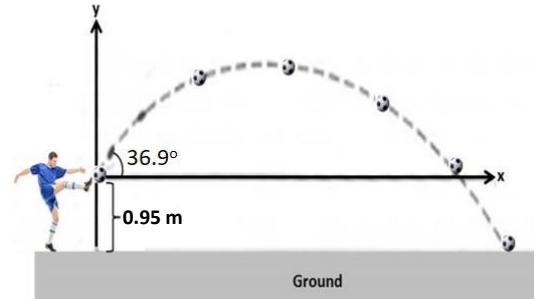
$$v_{yf} = v_{yi} - gt$$

$$v_{yf} = -2 - 10(1.6) = -18 \text{ m/s}$$

Answer: $v_{yf} = -18 \text{ m/s}$

LP2. A ball is shot such that it leaves the player's foot at a distance of **0.95 m above ground level** as shown in the figure. The initial speed of the ball is 15 m/s at an angle of 36.9° above the horizontal.

a) Find the time (in s) which is required for the ball to reach the ground.


$$v_{xi} = v_i \cos(36.9^\circ) = 12 \text{ m/s}$$

$$v_{yi} = v_i \sin(36.9^\circ) = 9 \text{ m/s}$$

$$\Delta y = -0.95 \text{ m}$$

$$\Delta y = v_{yi}t - \frac{1}{2}gt^2$$

$$-0.95 = 9t - 5t^2 \Rightarrow t = 1.9 \text{ s}$$

Answer: $t = 1.9 \text{ s}$

b) Find the velocity (in m/s) in unit vector notation of the ball just before it strikes the ground.

$$v_{xf} = v_{xi} = 12 \text{ m/s}$$

$$v_{yf} = v_{yi} - gt = 9 - 10(1.9) = -10 \text{ m/s}$$

$$\vec{v}_f = (12\hat{i} - 10\hat{j}) \text{ m/s}$$

Answer: $\vec{v}_f = (12\hat{i} - 10\hat{j}) \text{ m/s}$

c) If the initial velocity of the ball is $\vec{v}_i = (v_{xi}\hat{i} + v_{yi}\hat{j}) \text{ m/s}$, then its velocity and acceleration at the maximum height are:

* $\vec{v} = (v_{xi}\hat{i} + v_{yi}\hat{j}) \text{ m/s}$ and $\vec{a} = (-10\hat{i} - 10\hat{j}) \text{ m/s}^2$

Ⓐ $\vec{v} = (v_{xi}\hat{i} + 0\hat{j}) \text{ m/s}$ and $\vec{a} = (0\hat{i} - 10\hat{j}) \text{ m/s}^2$

* $\vec{v} = (v_{xi}\hat{i} + 0\hat{j}) \text{ m/s}$ and $\vec{a} = (-10\hat{i} - 10\hat{j}) \text{ m/s}^2$