

Physics 101

Summer Semester

Final Exam

Monday, August 15, 2022

2:00 PM – 4:00 PM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Fatema Aldossari

Dr. Abdul Khaleq

Dr. Belal Salameh

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	P5	P6	SP7	LP1	LP2	LP3	Q1	Q2	Q3	Q4	Total
Pts	3	3	3		3	3	3	5	5	5	1	1	1	1	40

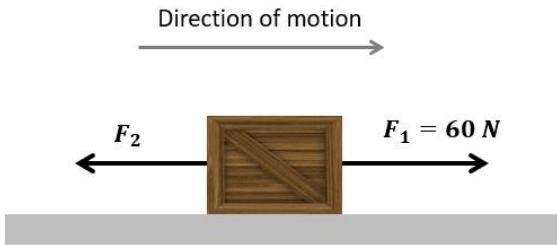
Important:

1. Answer all questions and problems (No solution = no points).
2. Full mark = 40 points as arranged in the above table.
3. **Give your final answer in the correct unit.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Short Problems (3 points each)

SP1. A 4 Kg block is pushed across a **rough** horizontal surface ($\mu_k = 0.4$) by two applied forces, as shown.

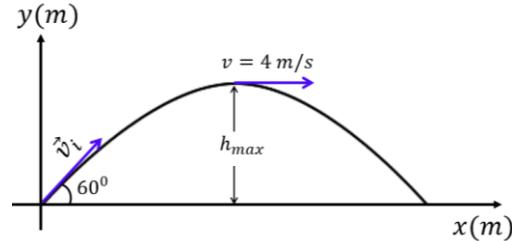

The block moves **to the right** with acceleration of 2 m/s^2 . **Find the magnitude of the force F_2 .**

$$\Sigma F = ma$$

$$F_1 - F_2 - \mu_k mg = ma$$

$$F_2 = F_1 - \mu_k mg - ma$$

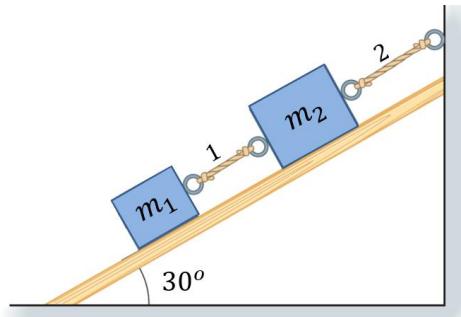
$$= 60 - (0.4)(40) - (4)(2) = 36 \text{ N}$$


SP2. A stone is projected from the ground level, as shown. **If the speed of the stone at the maximum height is 4 m/s , find the maximum height (h_{max}) of the stone.**

$$v_{xi} = v_i \cos \theta \Rightarrow v_i = \frac{v_{xi}}{\cos \theta} = \frac{4}{\cos 60^\circ} = 8 \text{ m/s}$$

$$v_{yf}^2 = v_{yi}^2 - 2g\Delta y$$

$$0 = (v_i \sin 60^\circ)^2 - 20h_{max}$$

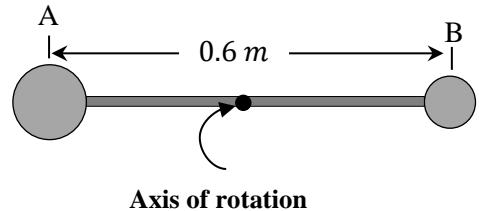

$$\Rightarrow h_{max} = \frac{(8 \sin 60^\circ)^2}{20} = 2.4 \text{ m}$$

SP3. Two blocks ($m_1 = 8 \text{ kg}, m_2 = 12 \text{ kg}$) rest on a **frictionless incline** are connected by a string and tied to a wall by another string, as shown. **Find the tension in each string (T_1 and T_2).**

$$T_1 = m_1 g \sin 30^\circ = 40 \text{ N}$$

$$T_2 = (m_1 + m_2)g \sin 30^\circ = 100 \text{ N}$$

SP4. Two small masses, $m_A = 0.3 \text{ Kg}$ and $m_B = 0.2 \text{ Kg}$, are connected by a rod ($L_{rod} = 0.6 \text{ m}$, $M_{rod} = 0.4 \text{ kg}$), as shown. The system rotates about a vertical axis that passes through the center of the rod with angular speed $\omega = 40 \text{ rad/s}$. Find the rotational kinetic energy of the system.


Hint: the moment of inertia of the rod about its center is: $I_{\text{rod}} = \frac{1}{12}ML^2$

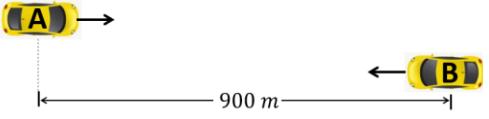
$$I = \sum m_i r_i^2 + I(\text{rod})$$

$$= m_A (0.3)^2 + m_B (0.3)^2 + \frac{1}{12}ML^2$$

$$= 0.3 (0.3)^2 + 0.2 (0.3)^2 + \frac{1}{12}(0.4)(0.6)^2 = 0.057 \text{ kg} \cdot \text{m}^2$$

$$K_{\text{rot}} = \frac{1}{2}I\omega^2 = \frac{1}{2}(0.057)(40^2) = 45.6 \text{ J}$$

SP5. A fan is rotating at 12 rad/s . When turned off, it slows uniformly and stops in 60 s . How many revolutions does the fan make during this time?


$$\alpha = \frac{\omega_f - \omega_i}{t} = \frac{0 - 12}{60} = -0.2 \text{ rad/s}^2$$

$$\Delta\theta = \omega_i t + \frac{1}{2}\alpha t^2 = 12(60) + \frac{1}{2}(-0.2)(60^2) = 360 \text{ rad}$$

$$\text{number of revolutions} = \frac{360}{2(3.14)} \text{ rev} = 57.3 \text{ rev}$$

SP6. Car A is moving due east with a **constant speed** of 20 m/s . Car B starts moving **from rest** when the distance between the two cars is 900 m to the west with a **constant acceleration** of 2 m/s^2 , as shown.

Find the time before the two cars pass each other?

$$v_A = 20 \text{ m/s} \quad a_B = 2 \text{ m/s}^2 \quad v_{B_i} = 0$$

$$900 = \Delta x_A + \Delta x_B$$

$$= v_A t + \frac{1}{2} a_B t^2$$

$$900 = 20t + t^2$$

$$t^2 + 20t - 900 = 0$$

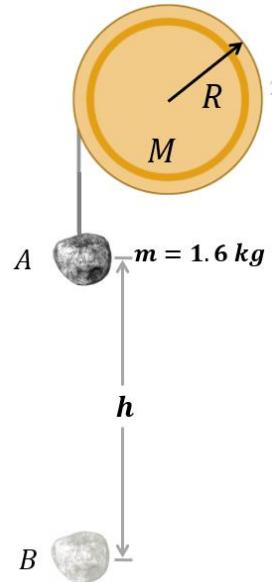
$$t = \frac{-20 \pm \sqrt{400 - 4(-900)}}{2} = 21.6 \text{ s}$$

SP7. A ball ($m = 0.5 \text{ kg}$) **rests** on the ground. A boy kicked the ball by his foot and the average force exerted on the ball during the kick is 270 N . If the ball's speed immediately after the kick is 5.4 m/s . **Find the contact time between the foot and the ball.**

$$|\Delta \vec{p}| = \left(\sum F \right)_{av} \Delta t$$

$$m(v_f - v_i) = \left(\sum F \right)_{av} \Delta t$$

$$0.5(5.4 - 0) = 270 \Delta t \Rightarrow \Delta t = 0.01 \text{ s}$$


Part II: Long Problems (5 points each)

LP1. A 1.6 kg stone is attached to a light wire that is wrapped around the rim of a uniform solid disk ($M = 2 \text{ kg}$, $R = 10 \text{ cm}$, $I = \frac{1}{2}MR^2$), as shown. The stone is released **from rest at point A**. The rotational kinetic energy of the disk when the stone reaches point B is 8 J

a) **Find the speed of the stone when it reaches point B.**

$$K_{rot} = \frac{1}{2}I\omega^2 = \frac{1}{2}\left(\frac{1}{2}MR^2\right)\left(\frac{v}{R}\right)^2 = \frac{1}{4}Mv^2$$

$$v = \sqrt{\frac{4K_{rot}}{M}} = \sqrt{\frac{4(8)}{2}} = 4 \text{ m/s}$$

b) **Find the height h .**

$$E_i = E_f$$

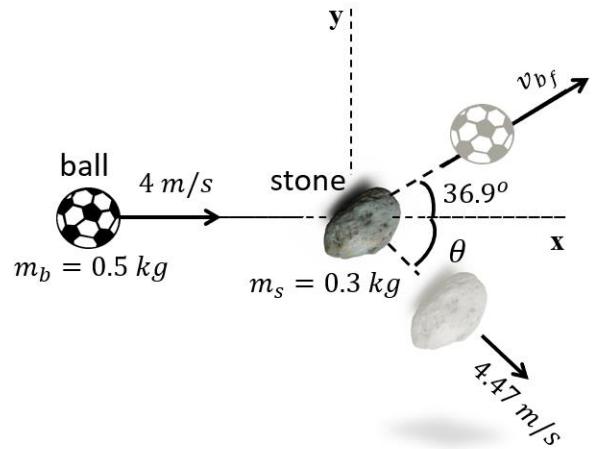
$$mgh = K_{rot} + \frac{1}{2}mv^2$$

$$h = \frac{K_{rot} + \frac{1}{2}mv^2}{mg} = \frac{8 + \frac{1}{2}(1.6)(4^2)}{16} = 1.3 \text{ m}$$

c) **Find the change in the gravitational potential energy of the system when the stone moves from point A to point B.**

$$\Delta U_g = U_g(B) - U_g(A) = 0 - mgh = -(1.6)(10)(1.3) = -20.3 \text{ J}$$

LP2. A ball ($m_b = 0.5 \text{ kg}$) traveling along the x-axis at 4 m/s collides elastically with a stone ($m_s = 0.3 \text{ kg}$) that rests on a frictionless horizontal surface. After the collision, the ball and the stone move as shown in the figure.


a) Find the speed of the ball after the collision (v_{b_f}).

$$\sum K_i = \sum K_f$$

$$\frac{1}{2} m_b v_{b_i}^2 + 0 = \frac{1}{2} m_b v_{b_f}^2 + \frac{1}{2} m_s v_{s_f}^2$$

$$0.5(4^2) = +0.5 v_{b_f}^2 + 0.3(4.47^2)$$

$$v_{b_f} = 2 \text{ m/s}$$

b) Find the angle θ .

$$\sum p_{x_i} = \sum p_{x_f}$$

$$m_b v_{b_i} + 0 = m_b v_{b_f} \cos 36.9^\circ + m_s v_{s_f} \cos \theta$$

$$0.5(4) = 0.5(2)(0.8) + 0.3(4.47) \cos \theta$$

$$\theta = 26.5^\circ$$

OR

$$\sum p_{y_i} = \sum p_{y_f}$$

$$0 = m_b v_{b_f} \sin 36.9^\circ - m_s v_{s_f} \sin \theta$$

$$\theta = \sin^{-1} \left(\frac{m_b v_{b_f} \sin 36.9^\circ}{m_s v_{s_f}} \right) = \sin^{-1} \left(\frac{0.5(2)(0.6)}{0.3(4.47)} \right) = 26.5^\circ$$

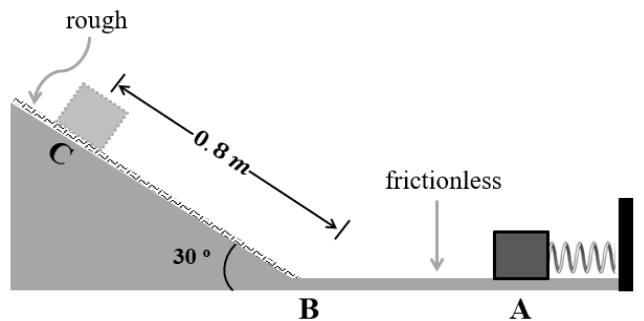
c) Find the momentum of the system after the collision in unit vector notation.

$$\sum \vec{p}_i = \sum \vec{p}_f = m_b \vec{v}_{b_i} + 0 = 0.5 (4\hat{i}) = 2 \hat{i} \text{ kg} \cdot \text{m/s}$$

OR

$$\sum \vec{p}_f = m_b \vec{v}_{b_f} + m_s \vec{v}_{s_f}$$

$$= 0.5[2 \cos 36.9^\circ \hat{i} + 2 \sin 36.9^\circ \hat{j}] + 0.3[4.47 \cos 26.5^\circ \hat{i} - 4.47 \sin 26.5^\circ \hat{j}] = 2 \hat{i} \text{ kg} \cdot \text{m/s}$$


LP3. A 1.2 kg block initially compresses a spring a distance $x = 0.2 \text{ m}$ before being released from rest at point A. The block then slides along a **frictionless** horizontal surface until point B, **then on a rough incline** ($\mu_k = 0.5$) between point B and point C. The block stops momentarily at point C.

a) Find the speed of the block at point B.

From B to C

$$E_f - E_i = w_{f_k}$$

$$mgy_C - \frac{1}{2}mv_B^2 = -\mu_k mg \cos(30^\circ) d$$

$$v_B = \sqrt{2gy_C + 2g \mu_k d \cos(30^\circ)} = \sqrt{2g(0.8 \sin(30^\circ)) + 2g(0.5)(0.8) \cos(30^\circ)} = 3.86 \text{ m/s}$$

b) Find the force constant of the spring.

From A to B

$$E_A = E_B$$

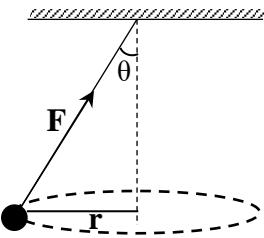
$$\frac{1}{2}kx_A^2 = \frac{1}{2}mv_B^2$$

$$k = m \frac{v_B^2}{x_A^2} = 1.2 \left(\frac{3.86^2}{0.2^2} \right) = 448 \text{ N/m}$$

c) Find the total work done on the block between point B and point C.

From B to C

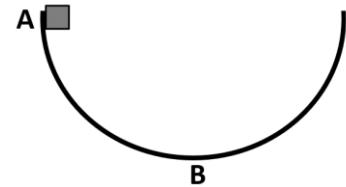
$$\sum w = \Delta K = K_C - K_B = 0 - \frac{1}{2}mv_B^2 = -\frac{1}{2}(1.2)(3.86^2) = -8.9 \text{ J}$$

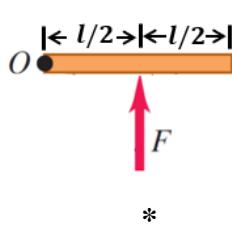

OR

$$\begin{aligned} \sum w &= w_{mg} + w_{f_k} = -mg(0.8 \sin 30^\circ) - \mu_k mg \cos 30^\circ (0.8) \\ &= -12(0.8 \sin 30^\circ) - 0.5(12) \cos 30^\circ (0.8) = -8.9 \text{ J} \end{aligned}$$

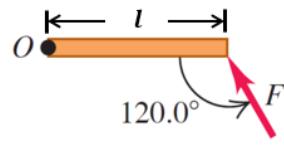
Part III: Questions (Choose the correct answer, one point each)

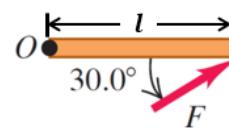
Q1. The ball of a conical pendulum is rotating in a horizontal plane with constant speed, as shown. The **work done on the ball by gravity during one complete revolution equals**

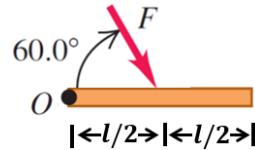

- * $F(2\pi r \sin\theta)$
- * $F(2\pi r \cos\theta)$
- * $F(2\pi r \tan\theta)$
- zero


Q2. A block is released from rest at point A and slides inside a **frictionless** hemispherical track, as shown.

The normal force (n) exerted by the track on the block as the block moves from point A to point B


- increases
- * decreases
- * remains constant


Q3. In each figure, the force F acts on a rod of length L that is free to rotate about an axis through point O, as shown. Both the force F and the rod lie in the xy -plane. **The magnitude of the torque about point O is maximum in**


*

(*)


*

*

Q4. Three balls with different masses are thrown with the **same initial speed v_0** , but at different angles relative to the horizontal, as shown. Ignoring air resistance, **which of the following statements is correct at the dashed level**

- * ball 3 has the lowest speed
- * ball 1 has the lowest speed
- all three balls have the same speed
- * the speed of each ball depends on its mass.

