

Physics 101

Summer Semester
Final Exam
Monday, July 29, 2019
11:00 am – 01:00 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

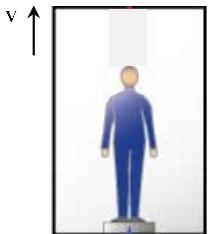
Prof. Yacoub Makdisi
Dr. Ahmed Al-Jassar
Dr. Hala Al-Jassar

Dr. Tareq Al Refai
Dr. Belal Salameh

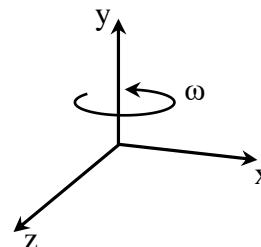
For Instructors use only

Grade:

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	SP6	SP7	LP1	LP2	LP3	Total
Pts	1	1	1	1	3	3	3	3	3	3	3	5	5	5	40

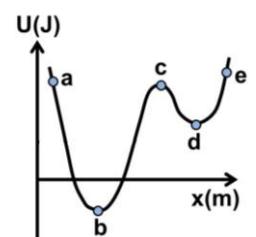

Important:

1. Answer all questions and problems.
2. Full mark = 40 points as arranged in the above table.
 - i) 4 Questions
 - ii) 7 Short Problems
 - iii) 3 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. **Cheating incidents will be processed according to the university rules.**

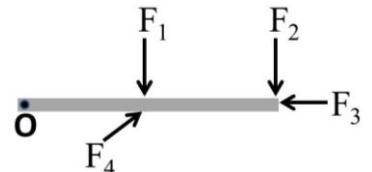

GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)**Q1.** A man of mass \mathbf{m} is inside an elevator that is moving upward with constant speed.**Which of the following statements is correct about the normal force \mathbf{N} on the man?**

- * The work of \mathbf{N} is zero
- * The work of \mathbf{N} is positive
- * The work of \mathbf{N} is negative
- * $\mathbf{N} < \mathbf{mg}$


Q2. In the figure, if the angular speed ω is decreasing, then the direction of the angular acceleration (α) is

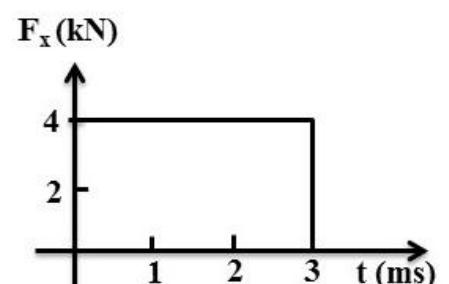
- * $+\hat{j}$
- * $-\hat{j}$
- * $+\hat{k}$
- * $-\hat{k}$


Q3. A single **conservative force** is exerted on a particle which is moving along the x-axis.

The potential energy U of this particle as a function of the position (x) is shown in the figure. **The acceleration of the particle is zero at the points:**

- * **c only**
- * **b, c and d**
- * **b and d only**
- * **a and e**

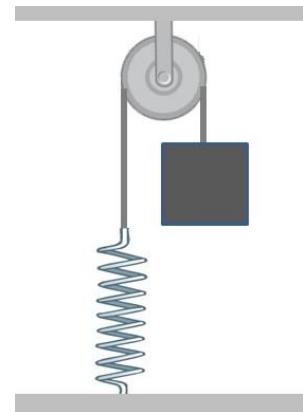
Q4. Four forces have the same magnitude ($F_1 = F_2 = F_3 = F_4$) act on a rod which is free to rotate about point \mathbf{O} as shown in the figure. If the torques exerted on the rod by the four forces are $\tau_1, \tau_2, \tau_3, \tau_4$ then:


- * $\tau_1 > \tau_2 > \tau_3 > \tau_4$
- * $\tau_2 > \tau_1 > \tau_4 > \tau_3$
- * $\tau_2 > \tau_3 > \tau_1 > \tau_4$
- * $\tau_1 > \tau_4 > \tau_2 > \tau_3$

Part II: Short Problems (3 points each)

SP1. A 2 kg box rests on a frictionless horizontal surface is struck by a ball which is moving along the x-axis. The magnitude of **the net force** exerted on the box during the collision varies with time as shown in the figure. **Find the speed (in m/s) of the box just after the collision.**

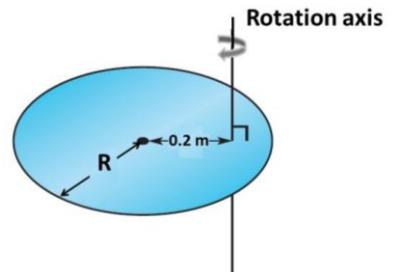
$$\Delta p = m(v_f - v_i) = \text{Area} = (4)(3) = 12 \text{ N} \cdot \text{s}$$


$$v_f = \frac{\Delta p}{m} + v_i = \frac{12}{2} + 0 = 6 \text{ m/s}$$

Answer: $v_f = 6 \text{ m/s}$

SP2. A block of mass 8 kg is fastened to a spring by a light rope that passes over **a massless frictionless pulley** as shown. After the block is released it came to equilibrium after stretching the spring a distance of 0.5 m, **find the force constant of the spring (in N/m).**

$$mg = T, T = kx$$


$$mg = kx \Rightarrow k = \frac{mg}{x} \\ = \frac{80}{0.5} = 160 \text{ N/m}$$

Answer: $k = 160 \text{ N/m}$

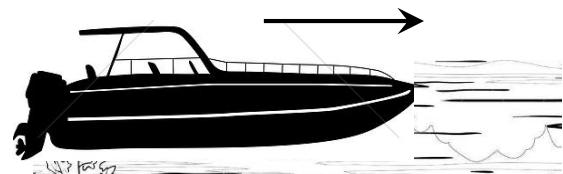
SP3. A disk ($M = 3 \text{ kg}$, $R = 0.3 \text{ m}$, $I_{cm} = \frac{1}{2}MR^2$) is rotating about an axis at a radial distance of 0.2 m from its center and perpendicular to the disk as shown in the figure. **If the disk rotates with angular speed of 20 rad/s find its kinetic energy (in J).**

$$I_p = I_{cm} + Md^2 = \frac{1}{2}MR^2 + Md^2 = \frac{1}{2}(3)(0.3)^2 + (3)(0.2)^2 \\ = 0.255 \text{ kg} \cdot \text{m}^2$$

$$K = \frac{1}{2}I\omega^2 = 51 \text{ J}$$

Answer: $K = 51 \text{ J}$

SP4. The engine of the boat provides a power of 250 hp, giving the boat a forward velocity of 20 m/s. **Find the horizontal force (in N) acting on the boat by its engine. (1 hp = 746 watts)**


Ignore all friction forces.

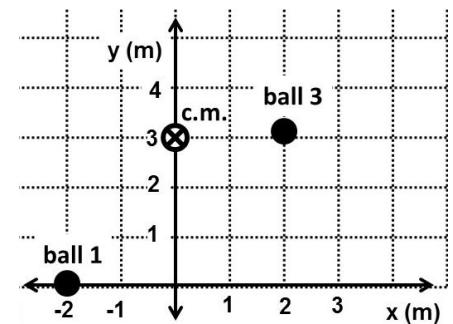
$$P = 250(746)W$$

$$= 186500 \text{ W}$$

$$P = \vec{F} \cdot \vec{V} = FV$$

$$F = \frac{P}{V} = \frac{186500}{20} = 9325 \text{ N}$$

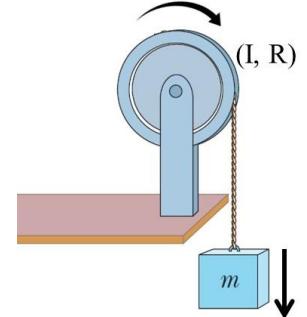
Answer: $F = 9325 \text{ N}$


SP5. A system of three small balls ($m_1 = 4 \text{ kg}$, $m_2 = 2 \text{ kg}$, and m_3) are located in the xy plane. The positions of ball 1, ball 3 and the center of mass of the three balls are shown in the figure. **Ball 2 is located on the y-axis.**

Find m_3 (in kg).

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = 0$$

$$0 = \frac{4(-2) + 2(0) + m_3(2)}{4 + 2 + m_3}$$


$$2m_3 = 8 \Rightarrow m_3 = 4 \text{ kg}$$

Answer: $m_3 = 4 \text{ kg}$

SP6. A light cable is wrapped around a solid cylinder of radius 0.2 m which is free to rotate about a fixed horizontal axis. A 4 kg block is connected to the free end of the cable as shown in the figure. **The block starts from rest** and reaches a speed of 3 m/s when it falls 2 m. **Find the moment of inertia of the pulley (in $\text{kg} \cdot \text{m}^2$).**

$$\begin{aligned} E_i &= E_f \\ mgh &= \frac{1}{2} mV_f^2 + \frac{1}{2} I \left(\frac{V_f^2}{R^2} \right) \end{aligned}$$

$$I = 2 \frac{R^2}{V_f^2} \left(mgh - \frac{1}{2} mV_f^2 \right) = \frac{2(0.2)^2}{(3)^2} \left[4(10)(2) - \frac{1}{2}(4)(3)^2 \right] = 0.55 \text{ kg} \cdot \text{m}^2$$

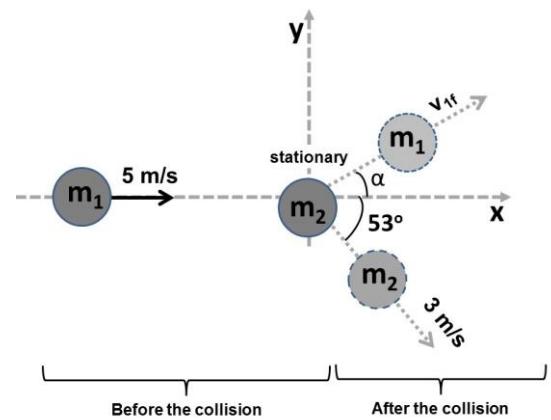
Answer: $I = 0.55 \text{ kg} \cdot \text{m}^2$

SP7. Two balls of equal masses collides **elastically** on a frictionless table. The velocities of the balls before and after the collision are shown in the figure. **Find the speed (in m/s) of ball 1 after the collision and find the angle α .**

$$\frac{1}{2} V_{1i}^2 + 0 = \frac{1}{2} V_{1f}^2 + \frac{1}{2} V_{2f}^2$$

$$V_{1f} = \sqrt{V_{1i}^2 - V_{2i}^2} = \sqrt{5^2 - 3^2} = 4 \text{ m/s}$$

$$\Sigma P_{y1} = \Sigma P_{yf}$$


$$0 = m V_{1f} \sin \alpha - m V_{2f} \sin 53^\circ$$

$$\alpha = \sin^{-1} \left(\frac{V_{2f} \sin 53^\circ}{V_{1f}} \right)$$

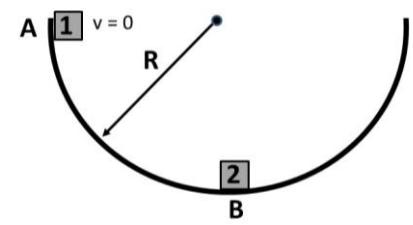
$$= \sin^{-1} \left(\frac{3 \sin 53^\circ}{4} \right) = 37^\circ$$

[OR]

$$\alpha + 53^\circ = 90^\circ \Rightarrow \alpha = 37^\circ$$

Answer: $V_{1f} = 4 \text{ m/s}$

Answer: $\alpha = 37^\circ$


Part III: Long Problems (5 points each)

LP1. Block 1 ($m_1 = 2 \text{ kg}$) starts **from rest** at point A and slides down a frictionless bowl of radius $R = 0.8 \text{ m}$. It collides with block 2 ($m_2 = 3 \text{ kg}$) at point B and the **two blocks stick together** after the collision.

a) Find the speed (in m/s) of block 1 just before the collision.

$$m_1 g R = \frac{1}{2} m_1 V_{1B}^2$$

$$V_{1B} = \sqrt{2gR} = \sqrt{2(10)(0.8)} = 4 \text{ m/s}$$

Answer: $V_{1B} = 4 \text{ m/s}$

b) Find the speed (in m/s) of the composite ($m_A + m_B$) just after the collision.

$$m_1 V_{1B} = (m_1 + m_2) V_f$$

$$2(4) = 5 V_f$$

$$V_f = 1.6 \text{ m/s}$$

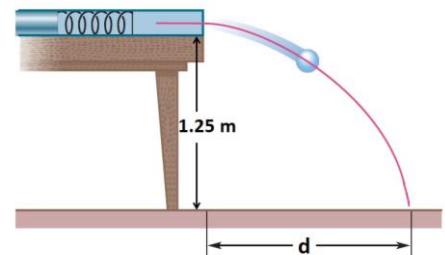
Answer: $V_f = 1.6 \text{ m/s}$

c) Find the normal force (in N) acting on the composite just after the collision.

$$n - (m_1 + m_2)g = (m_1 + m_2) \frac{V^2}{R}$$

$$n = (m_1 + m_2) \left[g + \frac{V^2}{R} \right] = 5 \left((10) + \frac{(1.6)^2}{0.8} \right) = 66 \text{ N}$$

Answer: $n = 66 \text{ N}$


LP2. A small ball of mass 72 g is fired from a spring-loaded gun ($k = 20 \text{ N/m}$) that is mounted on a table. The spring was compressed a distance of 30 cm and then the ball is fired. **The ball leaves the spring when it is at the edge of the table** as shown. The ball hits the ground at a horizontal distance of d from the edge of the table.

Ignore all friction forces

a) **Find the speed (in m/s) of the ball when it leaves the spring.**

$$\frac{1}{2}kx^2 = \frac{1}{2}mv^2$$

$$V = \sqrt{\frac{k}{m} x^2} = \sqrt{\frac{20}{0.072} (0.3)^2} = 5 \text{ m/s}$$

Answer: $V = 5 \text{ m/s}$

b) **Find the distance d (in m).**

$$\Delta y = V_{yi} t - \frac{1}{2}gt^2$$

$$-1.25 = 0 - 5(t)^2$$

$$t = 0.5 \text{ s}$$

$$d = \Delta x = V_{xi} t = 5(0.5) = 2.5 \text{ m}$$

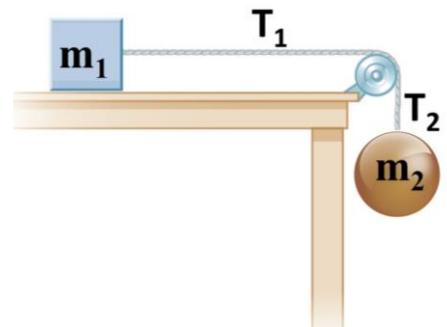
Answer: $d = 2.5 \text{ m}$

c) **Find the work (in J) done by gravity on the ball during its motion.**

$$w_{mg} = mgh = 0.072 (10)(1.25) = +0.9 \text{ J}$$

Answer: $w_{mg} = +0.9 \text{ J}$

LP3. A block of mass $m_1 = 5 \text{ kg}$ rests on a **rough** horizontal surface ($\mu_k = 0.3$) is attached to a ball of mass $m_2 = 8 \text{ kg}$ by a light rope that passes over a pulley of radius $R = 0.2 \text{ m}$ as shown in the figure. When the ball is released it accelerates downward at 1.5 m/s^2 .


a) Find the tensions T_1 and T_2 (in N) in the rope.

$$m_2g - T_2 = m_2a$$

$$T_2 = m_2(g - a) = 8(10 - 1.5) = 68 \text{ N}$$

$$T_1 - \mu_k m_1 g = m_1 a$$

$$T_1 = m_1(\mu_k g + a) = 5(3 + 1.5) = 22.5 \text{ N}$$

Answer: $T_1 = 22.5 \text{ N}$

Answer: $T_2 = 68 \text{ N}$

b) Find the net torque (in N.m) exerted on the pulley.

$$\Sigma\tau = T_2 R - T_1 R = (T_2 - T_1) R = (68 - 22.5) 0.2 = 9.1 \text{ N.m}$$

Answer: $\Sigma\tau = 9.1 \text{ N.m}$

c) Find the moment of inertia (in $\text{kg}\cdot\text{m}^2$) of the pulley.

$$\Sigma\tau = I\alpha = I\left(\frac{a}{R}\right)$$

$$\Rightarrow I = \left(\frac{R}{a}\right) (\Sigma\tau) = \frac{0.2}{1.5} (9.1) = 1.2 \text{ kg.m}^2$$

Answer: $I = 1.2 \text{ kg.m}^2$