

Physics 101

Spring Semester
 Second Midterm Exam
 Saturday, May 14, 2022
 9:00 AM – 10:30 AM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Tareq Al Refai
 Dr. Abdul Khaleq

Dr. Belal Salameh
 Dr. Nasser Demir
 Dr. Ruqayyah Askar
 Dr. Bedoor Alkurtass

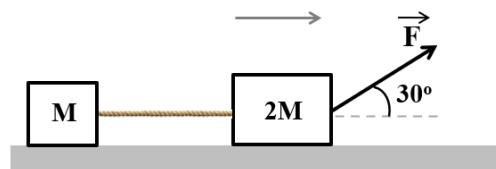
For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2		2	2	3	3	1	1	1	1	20
Pts												

Important:

1. Answer all questions and problems (No solution = no points).
2. Full mark = 20 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**


GOOD LUCK

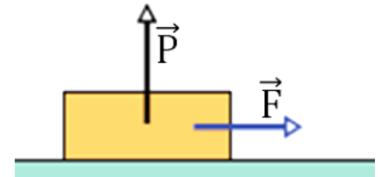
Part I: Short Problems (2 points each)

SP1. In the shown figure, the force $|\vec{F}| = 35 \text{ N}$ acts to move the two blocks on a horizontal frictionless surface. The blocks are connected by a massless string. **Find the magnitude of the tension (T) in the string.**

$$\text{Block } 2M: F \cos 30^\circ - T = 2Ma$$

$$\text{Block } M: T = Ma$$

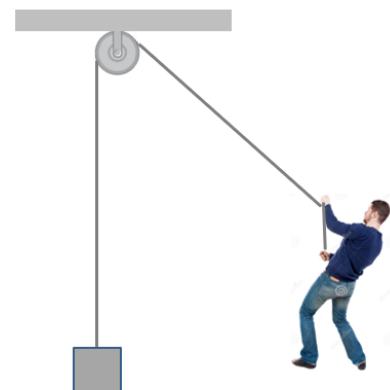
$$F \cos 30^\circ - T = 2T$$


$$T = \frac{F \cos 30^\circ}{3} = 10.1 \text{ N}$$

SP2. A block of mass ($m = 3 \text{ Kg}$) is initially at rest on a rough horizontal surface. A horizontal force $|\vec{F}| = 8 \text{ N}$ and a vertical force $|\vec{P}| = 6 \text{ N}$ are then applied to the block, as shown. The coefficients of friction between the block and surface are ($\mu_s = 0.4$ and $\mu_k = 0.3$). **Find the magnitude of the frictional force acting on the block. Is it static or kinetic?**

$$(f_s)_{max} = \mu_s(mg - P) = 0.4 (30 - 6) = 9.6 \text{ N}$$

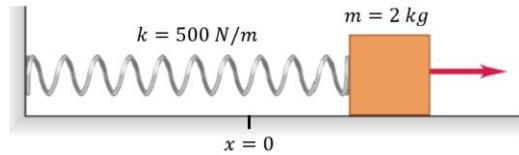
$F = 8 \text{ N} < (f_s)_{max}$, so the block will stay at rest.


$f_s = F = 8 \text{ N}$, it is static friction.

SP3. A 90 kg block is connected to a light rope that passes over a massless pulley, as shown. A man pulls the rope, and the block moves vertically upward at constant speed. **Find the average power output of the man if the block moves 6 m in 12 s .**

$$w_{man} = mgh = 90(10)(6) = 5400 \text{ J}$$

$$P_{av} = \frac{w_{man}}{t} = \frac{5400}{12} = 450 \text{ W}$$

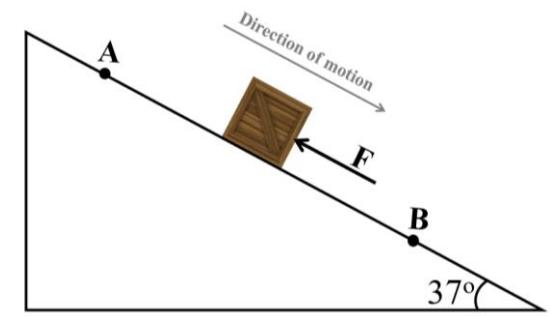

SP4. A block ($m = 2 \text{ kg}$) is attached to a spring ($k = 500 \text{ N/m}$). The block is pulled 5 cm to the right of equilibrium and **released from rest**. The coefficient of kinetic friction between the block and the surface is $\mu_k = 0.35$. **Find the speed of the block as it passes through equilibrium position ($x = 0$)**.

$$E_f - E_i = W_{\text{other}}$$

$$\frac{1}{2}mv_f^2 - \frac{1}{2}kx_i^2 = -f_k d$$

$$\frac{1}{2}(2)v_f^2 - \frac{1}{2}(500)(0.05)^2 = -\mu_k mgd$$

$$v_f = \sqrt{0.625 - 0.35(2)(10)(0.05)} = 0.52 \text{ m/s}$$



SP5. A 4 kg block is **lowered down** a 37° **rough** incline a distance of 5 m **from point A to point B**. A constant force $|\vec{F}| = 12 \text{ N}$ is applied to the block between A and B, as shown. The kinetic energy of the block at A is 15 J and at B is 30 J . **Use work energy theorem to find the work done on the block by the force of friction between A and B?**

$$W_F + W_g + W_n + W_{f_k} = K_f - K_i$$

$$-5F + mg(5 \sin 37^\circ) + W_{f_k} = 30 - 15$$

$$W_{f_k} = -45.4 \text{ J}$$

Part II: Long Problems (3 points each)

LP1. Only two forces \vec{F}_1 , and \vec{F}_2 act on a particle with mass $m = 3 \text{ kg}$. The forces are:

$$\vec{F}_1 = 2\hat{i} - 5\hat{j} + 2\hat{k}$$

$$\vec{F}_2 = -5\hat{i} + 8\hat{j} + \hat{k}$$

F_1 and F_2 are measured in N.

(a) What is the net force in unit vector notation?

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 = (-3\hat{i} + 3\hat{j} + 3\hat{k}) \text{ N}$$

(b) What is the magnitude of the acceleration?

$$\vec{a} = \frac{\vec{F}_{net}}{m} = (-1\hat{i} + 1\hat{j} + 1\hat{k}) \text{ m/s}^2$$

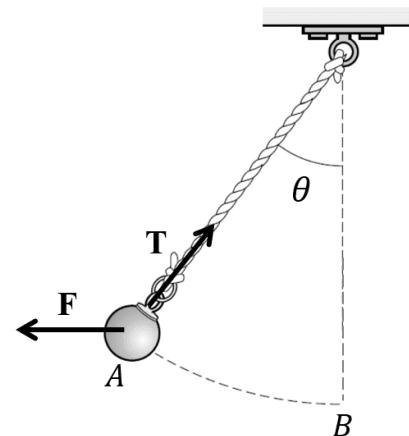
$$|\vec{a}| = \sqrt{1 + 1 + 1} = 1.73 \text{ m/s}^2$$

(c) If the particle starts from rest at the origin, what is its speed at the position $\vec{r} = (-2\hat{i} + 2\hat{j} + 2\hat{k}) \text{ m}$

$$w = \vec{F} \cdot \Delta \vec{r} = \Delta K$$

$$6 + 6 + 6 = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

$$18 = \frac{1}{2}(3)v_f^2$$


$$v_f = 3.46 \text{ m/s}$$

LP2. In the figure below, a ball ($m = 0.5 \text{ kg}$) hangs from the ceiling. The length of the string is $l = 1.2 \text{ m}$.

A horizontal force, \vec{F} , holds the ball steady. Given $\theta = 30^\circ$.

a) Find the magnitude of the tension (T) in the string at point A.

$$mg = T \cos \theta \Rightarrow T = \frac{mg}{\cos \theta} = 5.77 \text{ N}$$

b) If the ball is released ($F = 0$), what will be the speed of the ball at point B?

$$E_i = E_f$$

$$mgh_i = \frac{1}{2}mv_B^2$$

$$10(1.2 - 1.2 \cos(30)) = \frac{1}{2}v_B^2$$

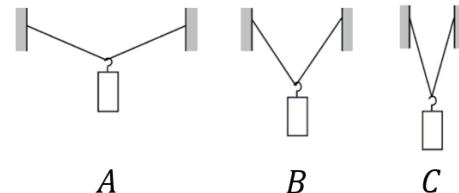
$$v_B = 1.8 \text{ m/s}$$

c) What is the magnitude of the net force on the ball at point B?

$$F_{tan} = \text{zero at the bottom point}$$

$$F_{net} = F_r = \frac{mv^2}{R} = \frac{0.5(1.8)^2}{1.2} = 1.35 \text{ N}$$

Part III: Questions (Choose the correct answer, one point each)


Q1. A block of mass m is suspended by a string of fixed length. The ends of the string are held at various positions, as shown. In which case, if any, is the magnitude of the tension (T) in the string the largest?

case A

* case B

* case C

* same in all three cases.

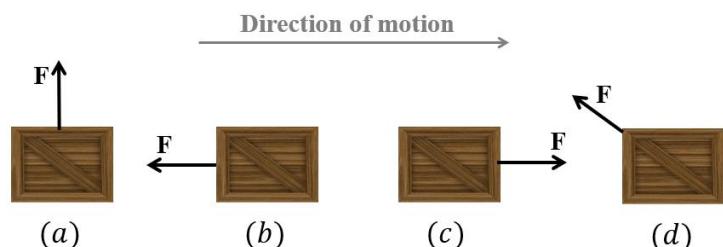
Q2. A 20 kg boy stands on a scale while riding in the elevator. If the scale reads 180 N , then the elevator is moving

* upward with increasing speed

upward with decreasing speed

* downward with decreasing speed

* upward with constant speed


Q3. The figure shows four situations in which a force is applied to an object. In all cases, the force (F) has the same magnitude, and the object moves **4 m to the right**. Rank the situations according to the work done by the force F , from most positive to most negative.

* a b c d

* c d a b

* b d c a

c a d b

Q4. If only **conservative forces** are acting on a body, then the work done by these forces

* does not change the potential energy

* does not change the kinetic energy

does not change the total mechanical energy

* is always negative