

Physics 101

Spring Semester
 Second Midterm Exam
 Saturday, September 12, 2020
 3:30 pm - 05:00 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Prof. Yacoub Makdisi
 Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Nasser Demi

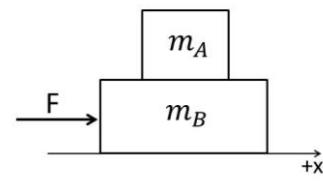
Dr. Tareq Al Refai
 Dr. Belal Salameh
 Dr. Abdel Khaleq
 Dr. Fatma Douseri

For Instructors use only

Grades:

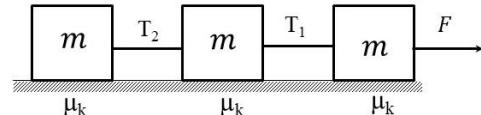
#	Q1	Q2	Q3	Q4	Q5	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	Total
1	1	1		1	1	2	2	2	2	2	2	2	2	2	2	25
Pts																

Important:


1. Answer all questions and problems.
2. Full mark = 25 points as arranged in the above table.
 - i) 5 Questions
 - ii) 10 Problems
3. No solution = no points.
4. Check the correct answer for each question.
5. Assume $g = 10 \text{ m/s}^2$.
6. Mobiles are **strictly prohibited** during the exam.
7. Programmable calculators, which can store equations, are not allowed.
8. Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Questions (Choose the correct answer, one point each):

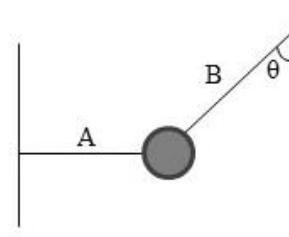

Q1. The two boxes **move together** with **constant speed** due to the applied force F . The direction and magnitude of the friction force acting **on the box of mass m_A** equals:

zero $* \mu_s m_A g$ (along the - x-axis)
 $* \mu_s m_A g$ (along the + x-axis) $* \mu_k m_A g$ (along the - x-axis)
 $* \mu_k m_A g$ (along the + x-axis)

Q2. **Three identical boxes** are connected by light strings. They are pulled along a straight line with a **constant speed** on a **rough** horizontal surface by a force F . If T_1 and T_2 are the tensions in the strings as shown, then:

$* F = T_1$ $* F = T_1 + T_2$ $* F = \mu_k mg$
 $* F = T_1 + 2\mu_k mg$ $* F = 3\mu_k mg$

Q3. Which of the following objects has **the largest** kinetic energy?


$* \text{Mass } M \text{ and speed } 4V$ $* \text{Mass } 2M \text{ and speed } 3V$ $* \text{Mass } 3M \text{ and speed } 2V$
 $* \text{Mass } 4M \text{ and speed } V$ $* \text{Mass } 10M \text{ and speed } V$

Q4. An object is thrown straight up. Which of the following is true about **the sign of work done by the gravitational force** while the object moves up and then down?

$* \text{positive on both ways up and down.}$
 $* \text{negative on both ways up and down.}$
 $* \text{negative on the way up and positive on the way down}$
 $* \text{positive on the way up and negative on the way down}$
 $* \text{zero on the way up and zero on the way down}$

Q5. A ball of mass m is **held** in place by light steel cables. Cable B makes an angle θ with the wall. The tension in cable A equals

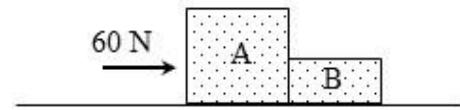
$* \text{Zero}$ $* mg$ $* mg \tan \theta$
 $* mg \cos \theta$ $* mg \sin \theta$

Part II: Problems (Answer the following problems, two points each)

P1. Two **identical boxes** are connected by a light rope. An applied force $F = 200 \text{ N}$ is pulling the boxes vertically upward with a **constant velocity**. Find the tension in the rope.

$$F - 2mg = 0 \Rightarrow mg = \frac{F}{2} = 100 \text{ N}$$

$$T - mg = 0 \Rightarrow T = mg = 100 \text{ N}$$

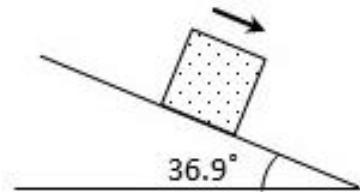


ground

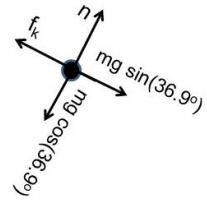
P2. Box A ($m_A = 20 \text{ kg}$) and box B ($m_B = 10 \text{ kg}$) are in contact on a horizontal **frictionless surface**. A horizontal force of 60 N is exerted on box A. Find the magnitude of the force that box A exerts on box B.

$$60 \text{ N} = (m_A + m_B)a_x \Rightarrow a_x = \frac{60}{m_A + m_B} = 2 \text{ m/s}^2$$

$$F_{AB} = m_B a_x = 20 \text{ N}$$

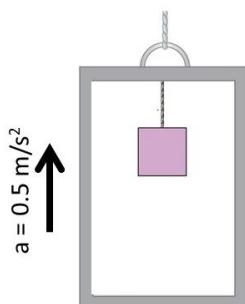


P3. A box **slides down on a rough ramp** ($\mu_k = 0.5$) as shown in the figure. Calculate the acceleration of the box.


$$n = mg \cos(36.9^\circ)$$

$$mg \sin(36.9^\circ) - f_k = ma_x$$

$$mg \sin(36.9^\circ) - \mu_k mg \cos(36.9^\circ) = ma_x$$


$$a_x = g[\sin(36.9^\circ) - \mu_k \cos(36.9^\circ)] = 2 \text{ m/s}^2$$

P4. A 2 kg box is **held** by a light cable that is fastened to the ceiling of an elevator. If the elevator accelerates **upward** at 0.5 m/s^2 , find the tension in the cable.

$$T - mg = ma$$

$$T = m(g + a) = 2(10 + 0.5) = 21 \text{ N}$$

P5. Ali of weight 400 N sits on a Ferris wheel of radius 4 m. The wheel rotates in a vertical circle with constant speed of 2 m/s. Find the **force that the seat exerts on Ali** when Ali is at the bottom of the circle.

At the bottom

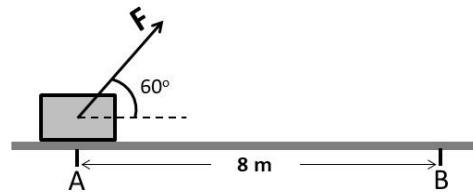
$$n - mg = m \frac{v^2}{R}$$

$$n = m \left(g + \frac{v^2}{R} \right) = 40 \left(10 + \frac{2^2}{4} \right) = 440 \text{ N}$$

P6. A **variable horizontal** force acts on an object along the x axis is given by $F(x) = x^2 + 4x + 1$ (where x is in meters and F is in N). Find the work done by this force in moving the object from $x = 0 \text{ m}$ to $x = 3 \text{ m}$.

$$\begin{aligned} W &= \int_{x_1}^{x_2} F_x \, dx = \int_0^3 (x^2 + 4x + 1) \, dx \\ &= \left[\frac{1}{3}x^3 + 2x^2 + x \right]_0^3 \\ &= 30 \text{ J} \end{aligned}$$

P7. What is the **average power** needed to lift a box of 80 kg mass by 20 m in 40 s?

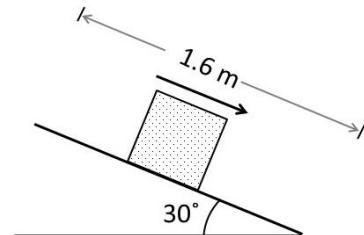

$$\begin{aligned} P_{av} &= \frac{W}{t} = \frac{mgh}{t} \\ &= \frac{(80)(10)(20)}{40} = 400 \text{ watt} \end{aligned}$$

P8. A 20 kg box is pulled by a constant force F and moved along a **frictionless horizontal** surface as shown. If the speed of the box at point A is 3 m/s and at point B is 7 m/s, find the magnitude of the force F .

$$\sum W = \Delta K \quad \Rightarrow \quad W_F = \Delta K$$

$$F r \cos(60^\circ) = K_f - K_i = \frac{1}{2} m(v_f^2 - v_i^2)$$

$$F = \frac{1/2 m(v_f^2 - v_i^2)}{r \cos(60^\circ)} = \frac{1/2 (20)(7^2 - 3^2)}{8(0.5)} = 100 \text{ N}$$



P9. A 12 kg block is released from **rest** at the top of a **rough incline** as shown. The block reaches a speed of 3 m/s at the bottom of the incline. How much work is done by the **friction force** on the block?

$$E_f - E_i = W_{f_k}$$

$$W_{f_k} = \frac{1}{2} m v_f^2 - m g y_i$$

$$= \frac{1}{2} (12)(3^2) - (12)(10)(1.6) \sin(30^\circ) = -42 \text{ J}$$

P10. A block is pushed against spring 1 ($k_1 = 625 \text{ N/m}$), compressing it 0.2 m. When it is released from rest, the block leaves spring 1 and travels along a **frictionless track** and then hits spring 2 ($k_2 = 400 \text{ N/m}$). What is the **maximum compression distance of spring 2**?

$$E_f = E_i$$

$$\frac{1}{2} k_1 x_1^2 = \frac{1}{2} k_2 x_2^2$$

$$x_2 = x_1 \sqrt{\frac{k_1}{k_2}} = 0.2 \sqrt{\frac{625}{400}} = 0.25 \text{ m}$$

