

Physics 101

Spring Semester
 Second Midterm Exam
 Saturday, April 6, 2019
 9:00 am - 10:30 am

Student's Name: Social Number:

Student's Number: Section:

Choose your Instructor's Name:

Prof. Yacoub Makdisi
 Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Nasser Demir

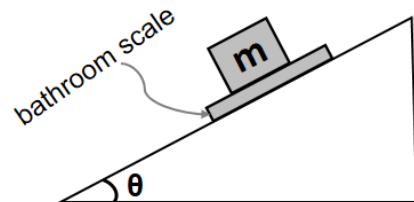
Dr. Tareq Al Refai
 Dr. Belal Salameh
 Dr. Abdel Khaleq

Grades:

For Instructors use only

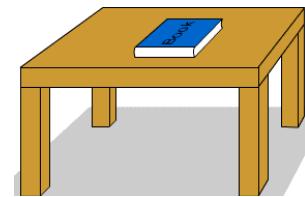
#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	1	1	2	2	2	2	2	3	3	20
1												

Important:

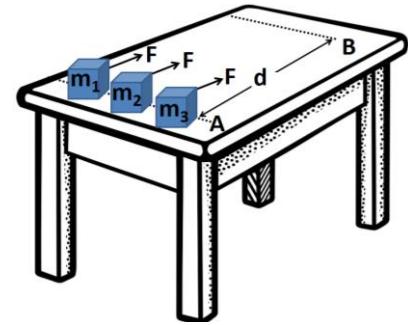

1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK

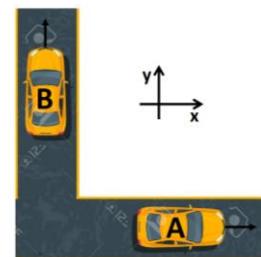
Part I: Questions (Choose the correct answer, one point each)


Q1. A block of mass (**m**) rests on a bathroom scale which is fixed on an incline as shown. **The reading of the scale will be**

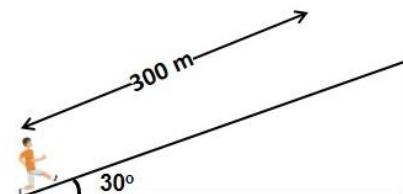
- less than mg
- greater than mg
- equal to mg
- less than mg or greater than mg depending on the value of θ .


Q2. A book rests on a table. **The reaction force to the book's weight is the force exerted by:**

- earth on the book
- book on the earth
- book on the table
- table on the book


Q3. Three blocks ($m_1 > m_2 > m_3$) rest on a frictionless table at position **A**. Three forces of equal magnitude (**F**) acted on the blocks and they moved the same distance (**d**) to position **B**, as shown. **Which of the three blocks will have the highest kinetic energy at position B.**

- m_1
- m_2
- m_3
- all the same

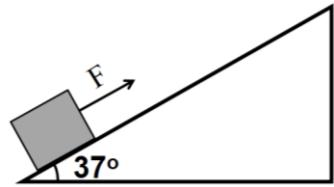

Q4. Car A moves along the positive x-axis and car B moves along the positive y-axis, as shown. **The angle (θ) between the positive x-axis and the velocity of car A relative to car B ($\vec{V}_{A/B}$) is**

- $\theta = 0^\circ$
- $90^\circ < \theta < 180^\circ$
- $180^\circ < \theta < 270^\circ$
- $270^\circ < \theta < 360^\circ$

Part II: Short Problems (2 points each)

SP1. A 60 kg man runs **at a constant speed** a distance $d=300$ m up a mountain inclined at 30° to the horizontal in 2 minutes. **What is the average power output (in W) of the man during this time period?**

$$\begin{aligned}
 P_{av} &= \frac{W}{t} \\
 &= \frac{m g d \sin(\theta)}{t} = \frac{(60)(10)(300) \sin(30^\circ)}{120} \\
 &= 750 \text{ W}
 \end{aligned}$$

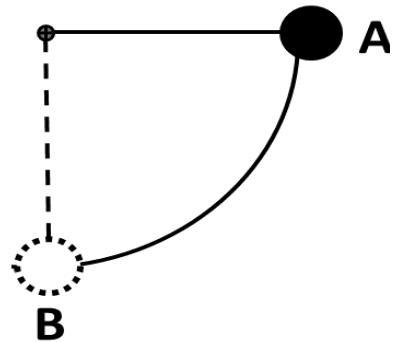

Answer: $P_{av} = 750 \text{ W}$

SP2. A force of magnitude $F=300$ N pulls a 20 kg block along a **rough incline** ($\mu_k=0.4$) as shown. **Find the acceleration (in m/s^2) of the block.**

$$F - mg \sin(37^\circ) - \mu_k mg \cos(37^\circ) = ma$$

$$a = \frac{F - mg \sin(37^\circ) - \mu_k mg \cos(37^\circ)}{m}$$

$$= \frac{300 - 200 \sin(37^\circ) - 0.4(200) \cos(37^\circ)}{20} = 5.8 \text{ m/s}^2$$



Answer: $a = 5.8 \text{ m/s}^2$

SP3. A pendulum has a cord of length $L = 1.8\text{m}$. The bob ($m=0.4 \text{ kg}$) is released **from rest** at point A, as shown. **Find the tension (in N) in the cord at point B.**

$$mgh_A = \frac{1}{2}mv_B^2 \Rightarrow v_B = \sqrt{2gh_A} = 6 \text{ m/s}$$

$$T_B - mg = m \frac{v_B^2}{R} \Rightarrow T_B = m \left(g + \frac{v_B^2}{R} \right) = 0.4 \left(10 + \frac{36}{1.8} \right) = 12 \text{ N}$$

Answer: $T_B = 12 \text{ N}$

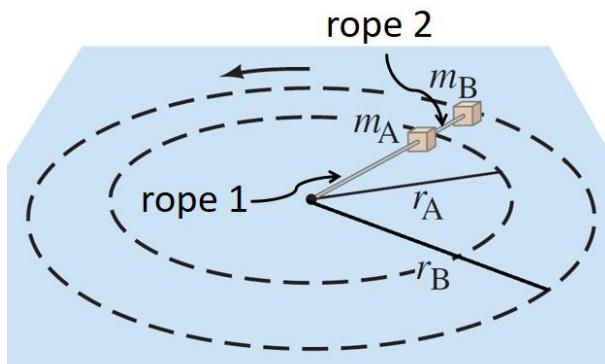
SP4. A net force $F_x = (4+3x^2)$ N acts on a 4 kg object along the x-axis. If the speed of the object at the origin ($x=0 \text{ m}$) is 4.9 m/s, **find its speed (in m/s) at $x=6 \text{ m}$?**

$$W_{F_x} = \int_0^6 F_x dx = \int_0^6 (4 + 3x^2) dx = \frac{1}{2}m(V_f^2 - V_i^2)$$

$$4x + x^3 \Big|_0^6 = \frac{1}{2}(4)(V_f^2 - 4.9^2)$$

$$240 = 2(V_f^2 - 24) \Rightarrow V_f = \sqrt{144} = 12 \text{ m/s}$$

Answer: $V_f = 12 \text{ m/s}$

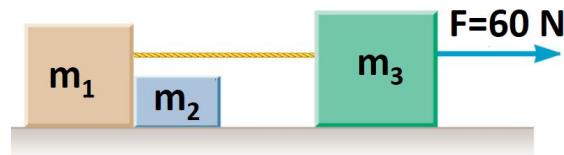
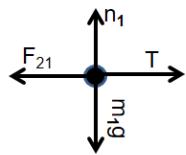

SP5: Two blocks ($m_A=4 \text{ kg}$ and $m_B=5 \text{ kg}$) are connected to each other and to a central post by two thin ropes as shown. The blocks rotate on a **frictionless horizontal surface** in circles of radii ($r_A = 0.6 \text{ m}$ and $r_B = 0.9 \text{ m}$) at **constant speeds** ($V_A = 2 \text{ m/s}$ and $V_B = 3 \text{ m/s}$). **Find the tension (in N) in rope 1.**

$$T_1 - T_2 = m_A \frac{V_A^2}{r_A}$$

$$T_2 = m_B \frac{V_B^2}{r_B}$$

$$\Rightarrow T_1 = m_A \frac{V_A^2}{r_A} + m_B \frac{V_B^2}{r_B}$$

$$= 4 \left(\frac{2^2}{0.6} \right) + 5 \left(\frac{3^2}{0.9} \right) = 76.7 \text{ N}$$

Answer: $T_1 = 76.7 \text{ N}$

Part III: Long Problems (3 points each)

LP1. Three blocks ($m_1=3.4 \text{ kg}$, $m_2=2.1 \text{ kg}$, $m_3=4.5 \text{ kg}$) move on a **frictionless surface** and a 60 N force acts on m_3 as shown. The cord connecting m_1 and m_3 is massless.

(a) **Draw the free body diagram for m_1 .**

(b) **Find the acceleration (in m/s^2) of the system.**

$$\sum F = (m_1 + m_2 + m_3) a$$

$$a = \frac{\sum F}{(m_1 + m_2 + m_3)} = \frac{60}{10} = 6 \text{ m/s}^2$$

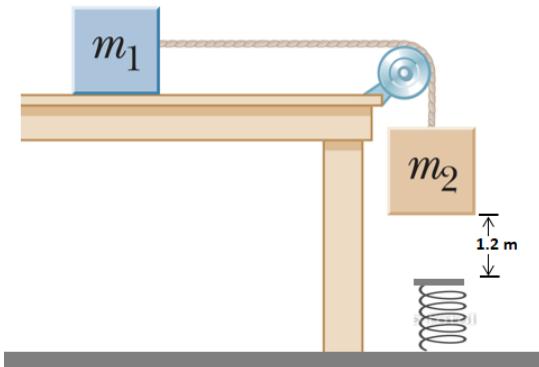
Answer: $a = 6 \text{ m/s}^2$

(c) **Find the force (in N) exerted on m_2 by m_1 .**

$$F_{12} = m_2 a = 12.6 \text{ N}$$

Answer: $F_{12} = 12.6 \text{ N}$

LP2. Two blocks ($m_1=6 \text{ kg}$ and $m_2=2 \text{ kg}$) are connected by a light rope that passes over a massless pulley as shown. The surface of the **table is frictionless** and m_2 is **released** when it is 1.2 m above a relaxed vertical spring.


a) Find the speed (in m/s) of m_2 just before it touches the spring.

$$E_f = E_i$$

$$\frac{1}{2}(m_1 + m_2)V^2 = m_2gh$$

$$V = \sqrt{\frac{2m_2gh}{(m_1 + m_2)}}$$

$$= \sqrt{\frac{2(2)(10)(1.2)}{8}} = 2.45 \text{ m/s}$$

Answer: $V = 2.45 \text{ m/s}$

b) If the spring is compressed to a maximum distance of 0.4 m, find the spring constant (k) (in N/m).

$$\frac{1}{2}m_2V^2 + m_2 g x_{max} = \frac{1}{2}k x_{max}^2$$

$$\frac{1}{2}(2)(6) + 2(10)(0.4) = \frac{1}{2}k (0.4)^2$$

$$k = 175 \text{ N/m}$$

Answer: $k = 175 \text{ N/m}$