

Physics 101

Spring Semester
Second Midterm Exam
Saturday, April 07, 2018
9:00 am – 10:30 pm

Student's Name: Serial Number:

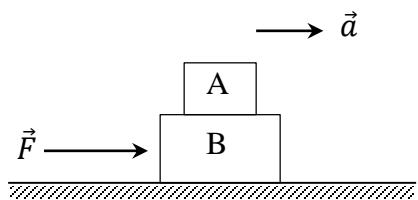
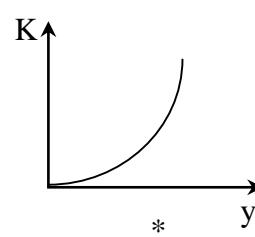
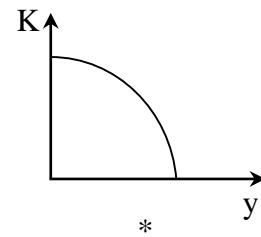
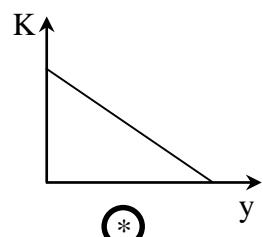
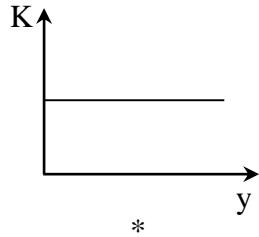
Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar
Dr. Hala Al-Jassar
Dr. Fatema Al Dosari
Dr. Nasser Demir

Dr. Abdul Mohsen
Dr. Tareq Al Refai
Dr. Abdul Khaleq
Dr. Belal Salameh

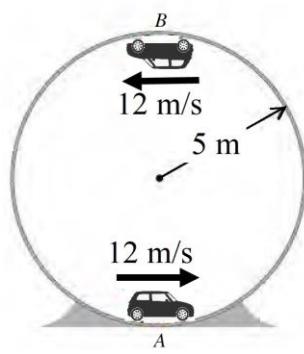
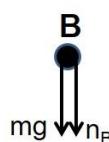
For Instructors use only






Grades:

Q1	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	2	2	2	2	2	3	3	20

Important:

1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Give your final answer in the correct units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Cheating incidents will be processed according to the university rules.**



GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)**Q1.** Consider a person standing in an elevator that is accelerating upward. The apparent weight of the person is * larger than the real weight of the person. * identical to the real weight of the person. * less than the real weight of the person. * larger or less than the real weight of the person dependent on the direction of the velocity.**Q2.** Which of the following physical concepts best explains why a passenger in a fast moving car should always fasten his seat belt? * centripetal force * gravitational acceleration * gravitational potential energy * inertia**Q3.** An applied force accelerates block **B** towards the right as shown in the figure. Block A, which does not slip with respect to block B, also accelerates to the right. The work done by static friction between the two blocks is * positive on both A and B. * negative on both A and B. * positive on A, negative on B. * negative on A, positive on B.**Q4.** A ball is thrown straight up into the air from ground level. Neglecting air resistance, which of the following graphs best represents the kinetic energy K of the ball as a function of its position y above ground level?**Part II: Short Problems (2 points each)****SP1.** A small toy car with $m = 1.5 \text{ kg}$ moves at a constant speed of 12 m/s in a vertical circular track with radius 5 m . What is the magnitude and direction of the normal force on the car at the top (point B)?

$$n_B + mg = m \frac{v_B^2}{R}$$

$$n_B = m \left(\frac{v_B^2}{R} - g \right) = 1.5 \left(\frac{12^2}{5} - 10 \right) \\ = 28.2 \text{ N (Downward)}$$

1/2

Answer: $n_B = 28.2 \text{ N (Downward)}$

SP2. Two blocks connected by a massless rope are initially at rest on a frictionless surface. Block A of mass 5 kg is pulled by a constant force of 20 N as shown. In the first 5 s after the force is applied the system moves 20 m to the right. **Find the tension in the rope between the two blocks.**

$$\Delta x = V_{xi}t + \frac{1}{2} a_x t^2$$

$$a = \frac{2\Delta x}{t^2} = \frac{2(20)}{5^2} = 1.6 \text{ m/s}^2$$

$$F - T = m_A a$$

$$20 - T = 5(1.6) \Rightarrow T = 12 \text{ N}$$

Answer: $T = 12 \text{ N}$

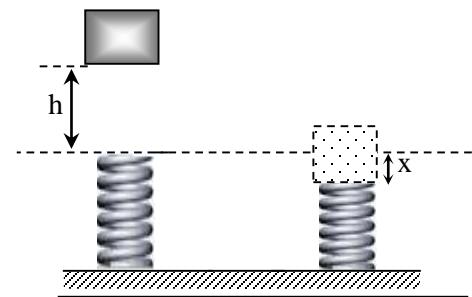
SP3. A variable net force acts on a 4 kg object moving along the x-axis. The net force is given by

$F(x) = 3x^2 + 2x + 1$, where F is measured in N and x is measured in m. If the object starts from rest at the origin, **find the kinetic energy of the object when it reaches the position $x=5 \text{ m}$.**

$$W = \Delta K$$

$$W = \int_0^5 F(x)dx = \int_0^5 (3x^2 + 2x + 1)dx = [x^3 + x^2 + x]_0^5 = 155 \text{ J}$$

$$155 = K_f - K_i = K_f - 0 \Rightarrow K_f = 155 \text{ J}$$


Answer: $K_f = 155 \text{ J}$

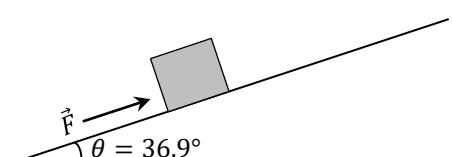
SP4. A block of mass 2 kg is released from rest a distance $h=1.8 \text{ m}$ above the top of an **uncompressed** spring of force constant k , as shown in the figure. The spring reaches a maximum compression of $x=0.2 \text{ m}$. **Find the force constant k of the spring.** Neglect air resistance.

$$E_1 = E_2$$

$$mg(h + x) = \frac{1}{2} kx^2$$

$$2(10)(2) = \frac{1}{2}k(0.2)^2 \Rightarrow k = 2000 \text{ N/m}$$

Answer: $k = 2000 \text{ N/m}$

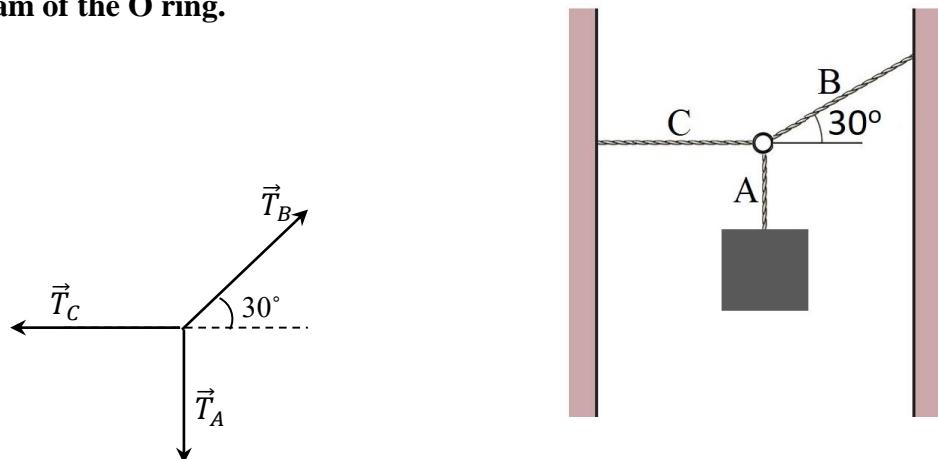

SP5. An applied force F acts on a block of mass 4 kg which is moving up and parallel to a **rough inclined plane** as shown in the figure. The coefficient of kinetic friction between the block and the incline is $\mu_k=0.3$. If the **block moves at a constant speed of 5 m/s, find the power supplied by F to the block.**

$$F = mg \sin \theta + \mu_k mg \cos \theta$$

$$= 4(10) \sin 36.9^\circ + 0.3(4)(10) \cos 36.9^\circ$$

$$F = 33.6 \text{ N}$$

$$\Rightarrow P_F = \vec{F} \cdot \vec{V} = FV = 33.6(5) = 168.1 \text{ W}$$



Answer: $P_F = 168.1 \text{ W}$

Part III: Long Problems (3 points each)

LP1. A block of mass 20 kg hangs from a light cord (A) that is linked at a very light O ring to two other light cords (B and C), the two cords are fastened to two vertical walls as shown in the figure.

a. Draw a free body diagram of the O ring.

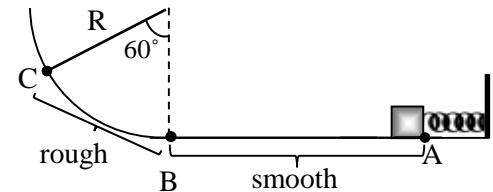
b. Find the tension in the cords A, B, and C.

$$T_A = mg = 20(10) = 200 \text{ N}$$

$$T_B \sin 30^\circ = T_A \quad \Rightarrow \quad T_B = \frac{T_A}{\sin 30^\circ} = 400 \text{ N}$$

$$T_C = T_B \cos 30^\circ = 346.4 \text{ N}$$

Answer: $T_A = 200 \text{ N}$


Answer: $T_B = 400 \text{ N}$

Answer: $T_C = 346.4 \text{ N}$

LP2. A block of mass 2 kg is pushed against a spring of force constant $k = 4000 \text{ N/m}$. The block is released from rest at point A when the spring is compressed a distance of $x = 0.2 \text{ m}$. The block slides on a horizontal frictionless surface before entering a rough curved surface as shown in the figure. The radius of the curved portion is $R=3 \text{ m}$, and the **block's speed is 6 m/s when it reaches point C.**

a. **Find the work done by the normal force on the block between points A and C.**

$$W_n(A \rightarrow C) = 0 \quad (\vec{n} \perp d\vec{r})$$

Answer: $W_n = 0$

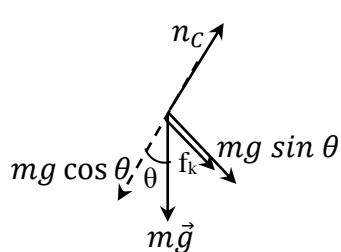
b. **Find the work done by friction on the block between points B and C.**

(Hint: use the conservation of energy or work energy theorem)

$$\Delta y = R(1 - \cos \theta)$$

$$E_C - E_A = W_f$$

$$\left[\frac{1}{2} m V_C^2 + mg R(1 - \cos \theta) \right] - \frac{1}{2} k x^2 = W_f$$


$$W_f = \left[\frac{1}{2} (2)(6)^2 + 2(10)(3)(1 - \cos 60^\circ) \right] - \frac{1}{2}(4000)(0.2)^2 = -14 \text{ J}$$

Answer: $W_f = -14 \text{ J}$

c. **Find the magnitude of the normal force on the block when it reaches point C.**

$$n_C - mg \cos \theta = \frac{m V_C^2}{R}$$

$$\begin{aligned} n_C &= 2 \left(\frac{v_C^2}{R} + g \cos \theta \right) \\ &= 2 \left(\frac{6^2}{3} + 10 \cos 60^\circ \right) \\ n_C &= 34 \text{ N} \end{aligned}$$

Answer: $n_C = 34 \text{ N}$