

Physics 101

Spring Semester
First Midterm Exam
Saturday, March 2, 2019
9:00 am - 10:30 am

Student's Name: Social Number:

Student's Number: Section:

Choose your Instructor's Name:

Prof. Yacoub Makdisi

Dr. Ahmed Al-Jassar

Dr. Hala Al-Jassar

Dr. Nasser Demir

Tareq Al Refai

Dr. Belal Salameh

Dr. Abdel Khaleq

Grades:

For Instructors use only

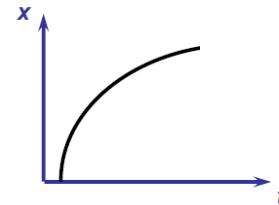
#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	1	1	2	2	2	2	2	3	3	20
Pts												

Important:

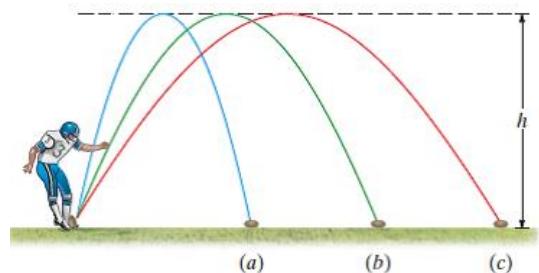
1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)**Q1.** If $|\vec{A} + \vec{B}| = |\vec{C}|$ and $|\vec{A}| + |\vec{B}| = |\vec{C}|$, then


- * \vec{A} is perpendicular to \vec{B}
- \vec{A} is parallel to \vec{B}
- * \vec{A} is anti parallel to \vec{B}
- * The angle between \vec{A} and \vec{B} is 45°

Q2. Ball A is dropped from the top of a building. **One second later**, ball B is dropped from the **same building**.As time progresses, **the difference in their speeds**. (assume no air resistance)


- * increases
- remains constant
- * decreases
- * cannot be determined from the information given

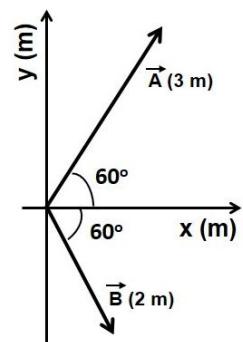
Q3. The graph of position versus time for a car is given below. **What can you say about the velocity of the car** over the shown period of time?

- * it speeds up all the time
- it slows down all the time
- * it moves at constant velocity
- * sometimes it speeds up and sometimes it slows down

Q4. The three trajectories in the shown figure reach **the same maximum height (h)**. Ignore the air resistance, **which trajectory has the longest time in air?**

- * a
- * b
- * c
- all have the same time.

Part II: Short Problems (2 points each)**SP1.** Two vectors \vec{A} and \vec{B} are shown in the figure. **Find the vector $\vec{A} - \vec{B}$ in unit vector notation.**

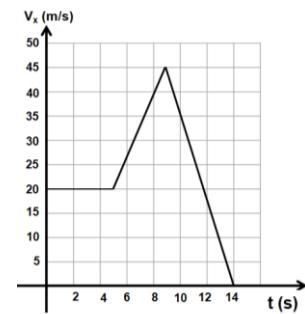

$$\vec{A} = 3 \cos 60 \hat{i} + 3 \sin 60 \hat{j}$$

$$= (1.5 \hat{i} + 2.6 \hat{j}) \text{ m}$$

$$\vec{B} = 2 \cos 60 \hat{i} - 2 \sin 60 \hat{j}$$

$$= (1 \hat{i} - 1.73 \hat{j}) \text{ m}$$

$$\vec{A} - \vec{B} = (0.5 \hat{i} + 4.33 \hat{j}) \text{ m}$$


Answer: $\vec{A} - \vec{B} = (0.5 \hat{i} + 4.33 \hat{j}) \text{ m}$

SP2. The figure shows the velocity of an object moving along the x-axis as a function of time. **Find the average acceleration (in m/s^2) of the object during the interval from $t = 0s$ to $t = 14s$.**

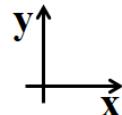
$$a_{av-x} = \frac{V_{xf} - V_{xi}}{t_f - t_i}$$

$$= \frac{0 - 20}{14 - 0}$$

$$= -1.43 \text{ } m/s^2$$

Answer: $a_{av-x} = -1.43 \text{ } m/s^2$

SP3. A particle **on a planet** is moving with constant acceleration. It is given an **initial velocity** of 19 m/s (**upward**). After 10 s, its velocity is 19 m/s (**downward**). **Find the acceleration due to gravity of this planet (magnitude and direction).**


$$V_f = V_i + at$$

$$-19 = 19 + a(10)$$

$$a = -3.8 \text{ } m/s^2$$

$$|a| = 3.8 \text{ } m/s^2$$

Direction = downward

Answer: $|a| = 3.8 \text{ } m/s^2$ downward

SP4. A particle is moving along the positive x-axis. Its speed **decreases** uniformly from 0.4 m/s to 0.2 m/s in 5 s and then it moves with a constant acceleration of 0.2 m/s² during the next 4 s. **What is the average speed (in m/s) of the particle over the whole time interval?**

$$\Delta x_1 = V_{av} \Delta t = \left(\frac{0.2 + 0.4}{2} \right) (5) = 1.5 \text{ m}$$

$$\Delta x_2 = V_i t + \frac{1}{2} a t^2 = (0.2)(4) + \frac{1}{2}(0.2)(4)^2 = 2.4 \text{ m}$$

$$V_{av} = \frac{d}{t} = \frac{1.5 + 2.4}{9} = 0.43 \text{ m/s}$$

Answer: $V_{av} = 0.43 \text{ m/s}$

SP5. An object starts from **the origin** at $t = 0 \text{ s}$, with initial velocity of $\vec{V}_o = (6\hat{i} + 8\hat{j}) \text{ m/s}$ and moves in the xy plane with constant acceleration of $\vec{a} = (2\hat{i} - 4\hat{j}) \text{ m/s}^2$. **How far is the object from the origin at $t = 2 \text{ s}$?**

$$\begin{aligned} \vec{r}_f &= \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2 \\ &= (6\hat{i} + 8\hat{j})(2) + \frac{1}{2}(2\hat{i} - 4\hat{j})(2)^2 \\ &= (16\hat{i} + 8\hat{j}) \text{ m} \\ d &= |\vec{r}_f| = \sqrt{16^2 + 8^2} = 17.9 \text{ m} \end{aligned}$$

Answer: $d = 17.9 \text{ m}$

Part III: Long Problems (3 points each)

LP1. A boy runs across the playground. The coordinates of his position as a function of time are given by:

$$x(t) = -3t^2 + 4t$$

$$y(t) = 2t^2 - 3$$

where x and y are in meters, and t is in seconds.

a) What is the position vector (\vec{r}) of the boy at $t = 2$ s in unit vector notation?

$$\vec{r}(2s) = (-3(2)^2 + 4(2)) \hat{i} + (2(2)^2 - 3) \hat{j}$$

$$= (-4 \hat{i} + 5 \hat{j}) \text{ m}$$

Answer: $\vec{r}(2s) = (-4 \hat{i} + 5 \hat{j}) \text{ m}$

b) What is the velocity vector (\vec{V}) at $t = 2$ s in unit vector notation?

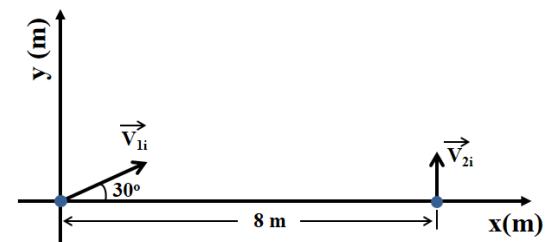
$$\vec{V} = \frac{d\vec{r}}{dt} = [(-6t + 4) \hat{i} + 4t \hat{j}] \text{ m/s}^2$$

$$\vec{V}(2s) = (-8 \hat{i} + 8 \hat{j}) \text{ m/s}$$

Answer: $\vec{V}(2s) = (-8 \hat{i} + 8 \hat{j}) \text{ m/s}$

c) What is the average velocity vector (\vec{V}_{av}) from $t = 0$ s to $t = 2$ s in unit vector notation?

$$\vec{V}_{av} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}(2) - \vec{r}(0)}{2 - 0} = \frac{-4 \hat{i} + 5 \hat{j} + 3 \hat{j}}{2}$$


$$= (-2 \hat{i} + 4 \hat{j}) \text{ m/s}$$

Answer: $\vec{V}_{av} = (-2 \hat{i} + 4 \hat{j}) \text{ m/s}$

LP2. A projectile is shot from the origin with initial speed $V_{1i} = 24 \text{ m/s}$ at $\theta = 30^\circ$. At the same time, a second object is thrown upward with $V_{2i} = 12 \text{ m/s}$, as shown in the figure.

a) Write the position vector ($\vec{r}(t)$) as a function of time for the first projectile.

$$\begin{aligned}\vec{r}(t) &= x(t) \hat{i} + y(t) \hat{j} \\ &= 24 \cos 30^\circ t \hat{i} + (24 \sin 30^\circ t - 5t^2) \hat{j} \\ &= (20.78 t \hat{i} + (12t - 5t^2) \hat{j}) \text{ m}\end{aligned}$$

Answer: $\vec{r}(t) = (20.78 t \hat{i} + (12t - 5t^2) \hat{j}) \text{ m}$

b) At what time do the two objects hit each other?

$$\Delta x_1 = (V_{1i} \cos \theta) t = 8 \text{ m}$$

$$t = \frac{8}{24 \cos 30^\circ} = 0.385 \text{ s}$$

Answer: $t = 0.385 \text{ s}$

c) At what height (h) from the ground do the two objects hit each other?

$$\begin{aligned}\Delta y &= h = V_{2i}t - \frac{1}{2} g t^2 \\ &= 12(0.385) - 5(0.385)^2 \\ &= 3.88 \text{ m}\end{aligned}$$

Answer: $h = 3.88 \text{ m}$