

Physics 101

Spring Semester
First Midterm Exam
Saturday, March 3, 2018
11:00 am - 12:30 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

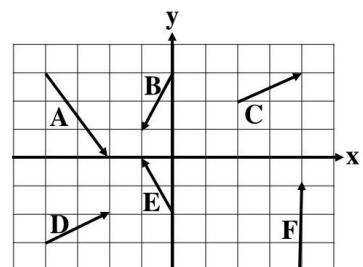
Dr. Ahmed Al-Jassar
Dr. Hala Al-Jassar
Dr. Fatem Al Dossari
Dr. Nassir Al-Samir

Dr. Abdul Mohsen
Dr. Tareq Al Refai
Dr. Abdul Khaleq
Dr. Belal Salameh

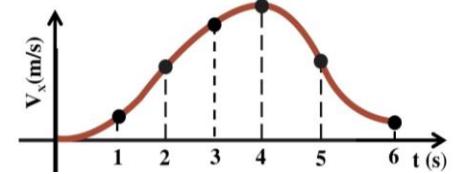
Grades:

For Instructors Use Only

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	1	1	2	2		2	2	3	3	20
Pts												


Important:

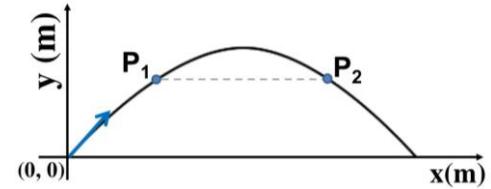
1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use correct units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Cheating incidents will be processed according to the university rules.**


GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)**Q1.** Which two vectors, when added, will have the **largest (positive) y component**?

- * \vec{C} and \vec{D}
- * \vec{E} and \vec{F}
- * \vec{A} and \vec{F}
- * \vec{A} and \vec{B}

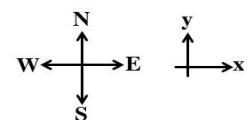
Q2. The velocity versus time of an object moving along the x axis is shown in the figure. During which time interval is **the acceleration always positive**?


- * $0 < t < 6$
- * $4 < t < 6$
- * $0 < t < 4$

Q3. A car is traveling along **the negative x-axis** begins to **slow down** as it approaches a traffic light. Then,

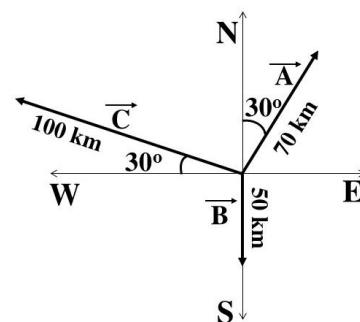
- * Its acceleration and its velocity are positive. * Its acceleration is positive, but its velocity is negative.
- * Its acceleration and its velocity are negative. * Its acceleration is negative, but its velocity is positive

Q4. The trajectory of a ball which is projected from the ground level is shown in the figure. If the position and the velocity of the ball at point P_1 respectively, are: $\vec{r}_1 = (2\hat{i} + 3\hat{j})\text{m}$ and $\vec{V}_1 = (4\hat{i} + 6\hat{j})\text{m/s}$, **then the position and the velocity of the ball at point P_2 respectively, are:**


- * $\vec{r}_2 = (2\hat{i} + 3\hat{j})\text{m}$ and $\vec{V}_2 = (4\hat{i} - 6\hat{j})\text{m/s}$
- * $\vec{r}_2 = (7\hat{i} + 3\hat{j})\text{m}$ and $\vec{V}_2 = (4\hat{i} + 6\hat{j})\text{m/s}$
- * $\vec{r}_2 = (7\hat{i} + 3\hat{j})\text{m}$ and $\vec{V}_2 = (4\hat{i} - 6\hat{j})\text{m/s}$
- * $\vec{r}_2 = (7\hat{i} + 3\hat{j})\text{m}$ and $\vec{V}_2 = (-4\hat{i} - 6\hat{j})\text{m/s}$

Part II: Short Problems (2 points each)**SP1.** A car undergoes the following displacements: First, **70 km in a direction 30° east of north**, then **50 km due south** and finally **100 km 30° north of west**. If the trip took 2 hours, **find the average velocity (in km/h) of the car during the trip**. Use unit vector notation.

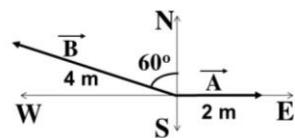
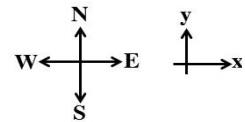
$$\vec{A} = 70 \sin(30^\circ) \hat{i} + 70 \cos(30^\circ) \hat{j} = (35 \hat{i} + 60.6 \hat{j}) \text{ km}$$


$$\vec{B} = -50 \hat{j} \text{ km}$$

$$\vec{C} = -100 \cos(30^\circ) \hat{i} + 100 \sin(30^\circ) \hat{j} = (-86.6 \hat{i} + 50 \hat{j}) \text{ km}$$

$$\vec{R} = \vec{A} + \vec{B} + \vec{C} = (-51.6 \hat{i} + 60.6 \hat{j}) \text{ km}$$

$$\vec{V}_{av} = \frac{\vec{R}}{t} = (-25.8 \hat{i} + 30.3 \hat{j}) \text{ km/hr}$$

Answer: $\vec{V}_{av} = (-25.8 \hat{i} + 30.3 \hat{j}) \text{ km/hr}$

SP2. Vector \vec{A} of magnitude 2 m and pointing east and vector \vec{B} of magnitude 4 m and pointing 60° west of north. **Find the magnitude of $\vec{A} \times \vec{B}$.**

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin(\theta) = (2)(4) \sin(150^\circ)$$

$$= 4 \text{ m}^2$$

Answer: $|\vec{A} \times \vec{B}| = 4 \text{ m}^2$

SP3. A box slides across a floor with an acceleration of magnitude 0.5 m/s^2 in a direction opposite to its velocity.

If the speed of the box is 4 m/s after sliding 9 m, **what was its initial speed (in m/s)?**

$$V_{xf} = 4 \text{ m/s} \quad a_x = -0.5 \text{ m/s}^2 \quad \Delta x = 9 \text{ m}$$

$$V_{xf}^2 = V_{xi}^2 + 2a_x \Delta x$$

$$4^2 = V_{xi}^2 + 2(-0.5)(9)$$

$$V_{xi} = 5 \text{ m/s}$$

Answer: $V_{xi} = 5 \text{ m/s}$

SP4. A package is released from a helicopter which is moving upward at constant speed of 15 m/s. The package takes 8 s to reach the ground. **What was the height (in m) of the package above the ground when it was released? Neglect air resistance.**

$$V_{yi} = +15 \text{ m/s} \quad t = 8 \text{ s}$$

$$\Delta y = V_{yi} t - \frac{1}{2} g t^2 = 15(8) - 5(8)^2$$

$$= -200 \text{ m}$$

$$h = 200 \text{ m}$$

Answer: $h = 200 \text{ m}$

SP5. If $\vec{A} + \vec{B} = 6\hat{i}$ and $\vec{A} - \vec{B} = 8\hat{j}$, find $\vec{A} \cdot \vec{B}$.

$$2\vec{A} = 6\hat{i} + 8\hat{j} \Rightarrow \vec{A} = 3\hat{i} + 4\hat{j}$$

$$2\vec{B} = 6\hat{i} - 8\hat{j} \Rightarrow \vec{B} = 3\hat{i} - 4\hat{j}$$

$$\vec{A} \cdot \vec{B} = (3)(3) + (4)(-4) = -7$$

Answer: $\vec{A} \cdot \vec{B} = -7$

Part III: Long Problems (3 points each)

LP1. The position of a remote car is given by $x(t) = 6t + 3$ and $y(t) = 12t - 2t^2$, where x and y are in meters, and t is in seconds.

a. What is the magnitude of the car's velocity (in m/s) at t=2 s?

$$V_x = \frac{dx}{dt} = 6 \text{ m/s} \quad V_y = \frac{dy}{dt} = (12 - 4t) \text{ m/s} \quad V_y(2s) = 4 \text{ m/s}$$

$$\vec{V}(2s) = V_x(2s) \hat{i} + V_y(2s) \hat{j} = (6 \hat{i} + 4 \hat{j}) \text{ m/s}$$

$$|\vec{V}(2s)| = \sqrt{6^2 + 4^2} = 7.2 \text{ m/s}$$

Answer: $|\vec{V}(2s)| = 7.2 \text{ m/s}$

b. What is the position vector in unit vector notation of the car when its speed is 6 m/s.

Speed = 6 m/s then $V_y = 0 \text{ m/s}$

$$V_y = 12 - 4t = 0 \Rightarrow t = 3 \text{ s}$$

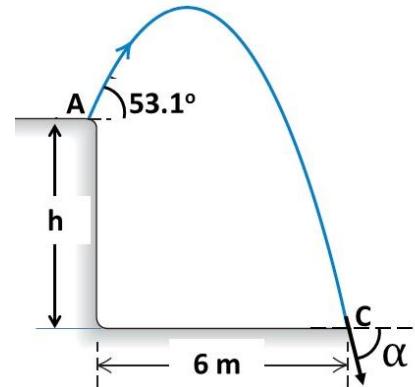
$$x(3 \text{ s}) = 6(3) + 3 = 21 \text{ m}$$

$$y(3 \text{ s}) = 12(3) - 2(3)^2 = 18 \text{ m}$$

$$\vec{r}(3s) = (21 \hat{i} + 18 \hat{j}) \text{ m}$$

Answer: $\vec{r}(3s) = (21 \hat{i} + 18 \hat{j}) \text{ m}$

c. The car is moving with


- * constant velocity
- constant acceleration
- * varying acceleration

LP2. A stone is thrown from the edge of a cliff (point A) with a speed of 5 m/s, at an angle of 53.1° above the horizontal as shown in the figure. The stone strikes the ground at point C, calculate,

a. The time of flight (in s) from point A to point C.

$$V_{xi} = 5 \cos(53.1^\circ) = 3 \text{ m/s} \quad V_{yi} = 5 \sin(53.1^\circ) = 4 \text{ m/s}$$

$$\Delta x = V_{xi} t \Rightarrow t = \frac{\Delta x}{V_{xi}} = \frac{6}{3} = 2 \text{ s}$$

Answer: $t = 2 \text{ s}$

b. The height of the cliff (h) (in m).

$$\Delta y = V_{yi} t - \frac{1}{2} g t^2 = 4(2) - 5(2^2) = -12 \text{ m}$$

$$h = 12 \text{ m}$$

Answer: $h = 12 \text{ m}$

c. If the stone hits point C in the direction shown in the figure, find the angle α .

$$V_{xf} = V_{xi} = 3 \text{ m/s}$$

$$V_{yf} = V_{yi} - gt = 4 - (10)(2) = -16 \text{ m/s}$$

$$\alpha = \tan^{-1} \left(\frac{16}{3} \right) = 79.4^\circ$$

Answer: $\alpha = 79.4^\circ$