

Physics 101

Spring Semester

Final Exam

Monday, June 6, 2022

5:00 PM – 7:00 PM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar

Dr. Hala Al-Jassar

Dr. Tareq Al Refai

Dr. Abdul Khaleq

Dr. Belal Salameh

Dr. Nasser Demir

Dr. Ruqayyah Askar

Dr. Bedoor Alkurtass

For Instructors only

Grades:

#	SP1	SP2	SP3	SP4	SP5	SP6	SP7	LP1	LP2	LP3	Q1	Q2	Q3	Q4	Total
3	3	3	3	3		3	3	5	5	5	1	1	1	1	40
Pts															

Important:

1. Answer all questions and problems (No solution = no points).
2. Full mark = 40 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK

Part I: Short Problems (3 points each)

SP1. The position of a particle moving along the x-axis is given by $x = 4 + 24t - 3t^2$, where x is in meters and t is in seconds. **Find the average acceleration of the particle between $t = 1$ s and $t = 3$ s.**

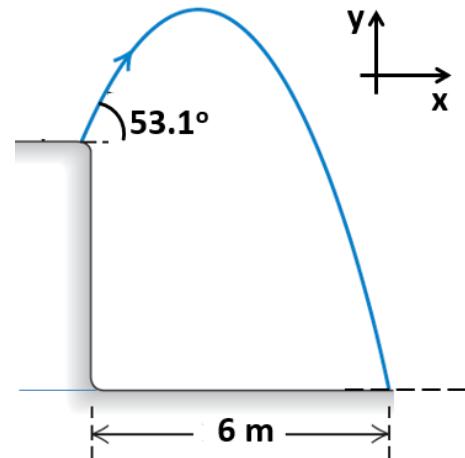
$$v_x(t) = \frac{dx}{dt} = 24 - 6t$$

$$v_x(t = 1\text{ s}) = 24 - 6(1) = 18\text{ m/s}$$

$$v_x(t = 3\text{ s}) = 24 - 6(3) = 6\text{ m/s}$$

$$a_{av-x} = \frac{v_{x_f} - v_{x_i}}{t} = \frac{6 - 18}{2} = -6\text{ m/s}^2$$

SP2. A stone is thrown from the edge of a cliff with a speed of 5 m/s at an angle of 53.1° above the horizontal, as shown. **With what velocity in unit vector notation does the stone hit the ground?**


$$v_{x_i} = v_i \cos 53.1^\circ = 3\text{ m/s}$$

$$v_{y_i} = v_i \sin 53.1^\circ = 4\text{ m/s}$$

$$\Delta x = v_{x_i} t \Rightarrow t = \frac{\Delta x}{v_{x_i}} = \frac{6}{3} = 2\text{ s}$$

$$v_{y_f} = v_{y_i} - gt = 4 - 10(2) = -16\text{ m/s}$$

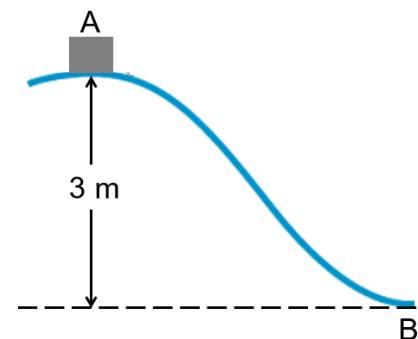
$$\vec{v}_f = (3\hat{i} - 16\hat{j})\text{ m/s}$$

SP3. A particle of mass 4 kg moves along the x-axis under the influence of a **net conservative force**. The potential energy is given by $U(x) = x^4 - 3x^2 + 5$, where x is in meters and U is in Joules. **Find the acceleration of the particle at $x = 1\text{ m}$.**

$$F_x = -\frac{dU}{dx} = -(4x^3 - 6x) = -4x^3 + 6x$$

$$F(x = 1\text{ m}) = -4(1)^3 + 6(1) = 2\text{ N}$$

$$a_x = \frac{F_x}{m} = 0.5\text{ m/s}^2$$

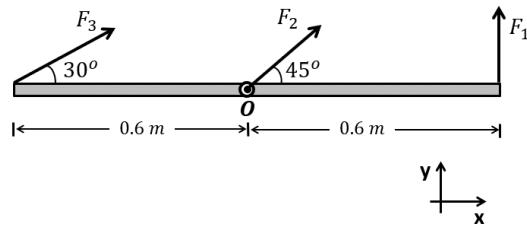

SP4. A box of mass 20 kg starts from rest at point A and slides down on a **rough** surface. The work done by friction on the box between point A and point B is -350 J . Find the box's speed at point B.

$$E_B - E_A = w_{fk}$$

$$\frac{1}{2}mv_B^2 - mgy_A = w_{fk}$$

$$\frac{1}{2}(20)v_B^2 - 20(10)(3) = -350$$

$$v_B = 5 \text{ m/s}$$


SP5. A stone of mass M is moving with velocity $\vec{v} = (4\hat{i} + 6\hat{j}) \text{ m/s}$ explodes into two parts (A and B) each of mass $M/2$. The velocity of stone A is $\vec{v}_A = (5\hat{i} - 3\hat{j}) \text{ m/s}$, find the velocity of stone B in unit vector notation.

$$\sum \vec{p}_i = \sum \vec{p}_f$$

$$M\vec{v} = \frac{M}{2}\vec{v}_A + \frac{M}{2}\vec{v}_B$$

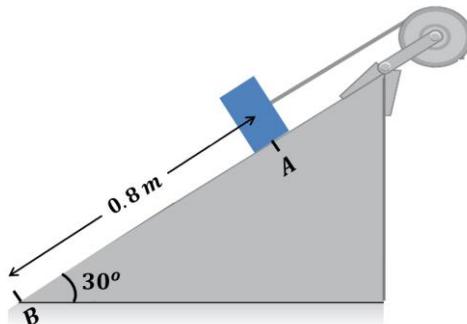
$$\vec{v}_B = 2\vec{v} - \vec{v}_A = (8\hat{i} + 12\hat{j}) - (5\hat{i} - 3\hat{j}) = (3\hat{i} + 15\hat{j}) \text{ m/s}$$

SP6. Three forces of magnitudes, $F_1 = 50 \text{ N}$, $F_2 = 80 \text{ N}$, and $F_3 = 140 \text{ N}$, act on a uniform rod of length 1.2 m , as shown. **Find the net torque due to these forces about a vertical axis passing through point O .** The rod and the three forces lie in the plane of the page.

$$\sum \vec{\tau} = +r_1 F_1 \sin 90^\circ + (0) - r_3 F_3 \sin 30^\circ$$

$$\sum \vec{\tau} = +(0.6)(50)(1) - (0.6)(140) \sin 30^\circ = -12 \hat{k} \text{ N} \cdot \text{m}$$

SP7. A light cord is wrapped around a pulley ($M = 2 \text{ kg}$, $R = 20 \text{ cm}$, $I = \frac{1}{2}MR^2$) and connected to a block of mass $m = 3 \text{ kg}$, as shown. The block is released from rest at point A and slides down a **frictionless incline**. **Find the speed of the block at point B.**

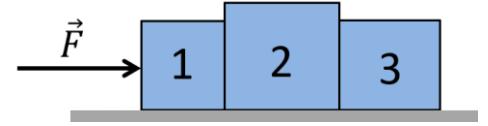

$$E_A = E_B$$

$$mgy_A = \frac{1}{2}mv_B^2 + \frac{1}{2}I\omega_B^2$$

$$mg(0.8 \sin 30^\circ) = \frac{1}{2}mv_B^2 + \frac{1}{2}(\frac{1}{2}MR^2)(\frac{v_B}{R})^2$$

$$0.4mg = (\frac{1}{2}m + \frac{1}{4}M)v_B^2$$

$$v_B = \sqrt{\frac{0.4mg}{\frac{1}{2}m + \frac{1}{4}M}} = 2.45 \text{ m/s}$$



Part II: Long Problems (5 points each)

LP1. Three blocks of wood ($m_1 = 5 \text{ kg}$, $m_2 = 9 \text{ kg}$, $m_3 = 6 \text{ kg}$) are in contact on a **rough horizontal surface** ($\mu_k = 0.4$). A horizontal force $F = 120 \text{ N}$ is applied on m_1 .

a) **Find the acceleration of the system**

$$F - \mu_k M_{total}g = M_{total}a$$

$$a = \frac{F - \mu_k M_{total}g}{M_{total}} = \frac{120 - 0.4(200)}{20} = 2 \text{ m/s}^2$$

b) **Find the magnitude of the force exerted on block 3 by block 2 (F_{23}).**

for block 3:

$$F_{23} - \mu_k m_3 g = m_3 a$$

$$F_{23} = \mu_k m_3 g + m_3 a = (0.4)(60) + 6(2) = 36 \text{ N}$$

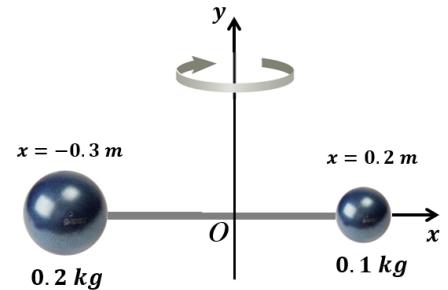
c) **Find the magnitude of the net force on m_3 .**

$$\sum F_{on m_3} = m_3 a = 12 \text{ N}$$

OR

$$\sum F_{on m_3} = F_{23} - \mu_k m_3 g = 36 - (0.4)(6)(10) = 12 \text{ N}$$

LP2. A system of two particles connected to a rod of length 0.5 m is rotating about the **y-axis**, as shown.


The moment of inertia of the system about y-axis is $I_{system} = 0.1 \text{ kg} \cdot \text{m}^2$. The angular position of the system is given by $\theta(t) = 2.5t^2 - 5t^3$, where θ is in radians and t is in seconds.

a) Find the rotational kinetic energy of the system at $t = 2 \text{ s}$.

$$\omega(t) = \frac{d\theta}{dt} = 5t - 15t^2$$

$$\omega(t = 2\text{s}) = 5(2) - 15(2^2) = -50 \text{ rad/s}$$

$$K_{rot} = \frac{1}{2} I_{system} \omega^2 = \frac{1}{2} (0.1)(50^2) = 125 \text{ J}$$

b) Find the net torque of the system about y-axis at $t = 2 \text{ s}$.

$$\alpha(t) = \frac{d\omega}{dt} = 5 - 30t$$

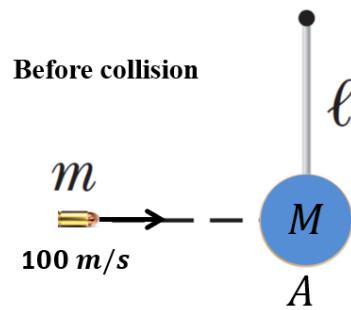
$$\alpha(t = 2\text{s}) = 5 - 30(2) = -55 \text{ rad/s}^2$$

$$\vec{\tau} = I\alpha = 0.1(-55) = -5.5 \hat{j} \text{ N} \cdot \text{m}$$

c) Find the moment of inertia of the rod.

$$I_{system} = I_{rod} + \sum m_i r_i^2$$

$$\Rightarrow I_{rod} = I_{system} - \sum m_i r_i^2 = 0.1 - [0.2(0.3^2) + 0.1(0.2^2)] = 0.078 \text{ kg} \cdot \text{m}^2$$

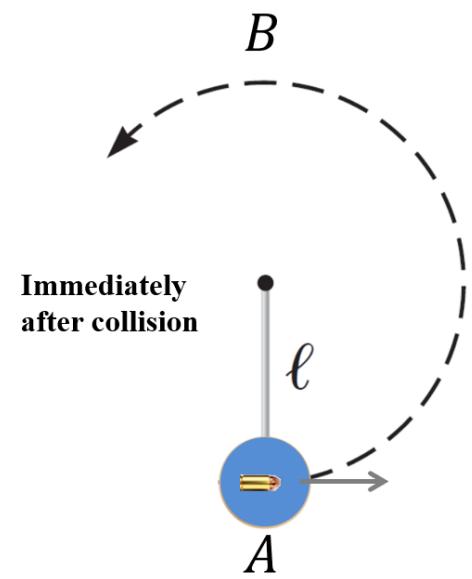

LP3. A bullet of mass $m = 50 \text{ g}$ moves at a speed of 100 m/s makes a completely inelastic collision with a pendulum bob of mass $M = 0.45 \text{ kg}$. The bob is suspended by a light rope of length $l = 1.2 \text{ m}$. After the impact, the bob swings through a vertical circle.

a) Find the speed of the bob immediately after the impact.

$$mv_{1i} + Mv_{2i} = (m + M)v_A$$

$$0.05(100) + 0.45(0) = 0.5 v_A$$

$$v_A = \frac{0.05(100)}{0.5} = 10 \text{ m/s}$$



b) Find the speed of the bob at point B.

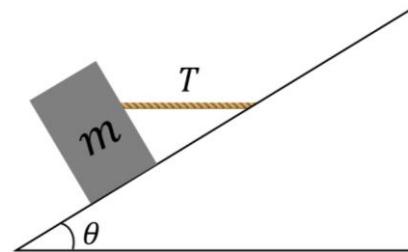
$$E_A = E_B$$

$$\frac{1}{2}(m + M)v_A^2 = \frac{1}{2}(m + M)v_B^2 + (m + M)g(2l)$$

$$v_B = \sqrt{v_A^2 - 4gl} = \sqrt{10^2 - 4(10)(1.2)} = 7.2 \text{ m/s}$$

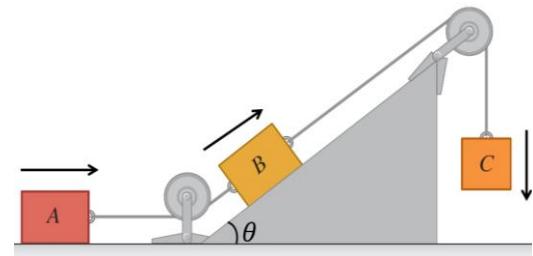
c) Find the tension in the rope at point B.

at B:

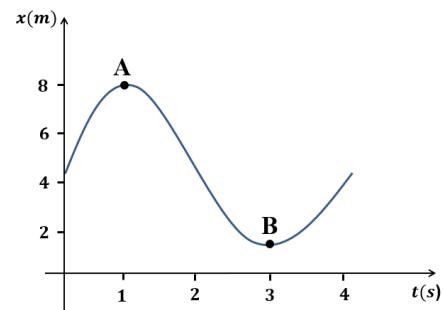

$$T + (m + M)g = (m + M)\left(\frac{v_B^2}{l}\right)$$

$$T = (m + M)\left(\frac{v_B^2}{l} - g\right) = 16.7 \text{ N}$$

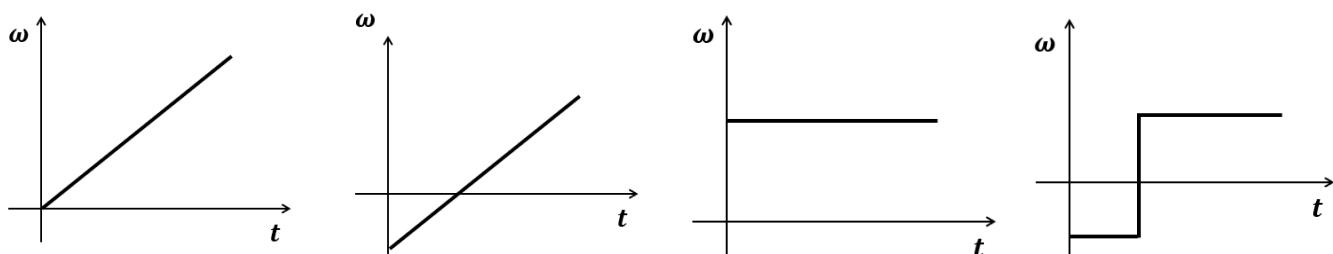
Part III: Questions (Choose the correct answer, one point each)


Q1. A block of mass m is held in place on a **frictionless incline** by a **horizontal cable** with tension T , as shown. What is the tension in the cable?

- * $T = mg \sin \theta$
- * $T = mg \cos \theta$
- * $T = mg$
- * $T = mg \tan \theta$


Q2. Three blocks are connected as shown. The ropes and pulleys are of negligible mass. When released, block C moves downward, block B moves up the ramp, and block A moves to the right. The **work done by gravity** is

- * Positive on all the blocks.
- * Negative on all the blocks.
- * Zero on block A, negative on block B, positive on block C.
- * Zero on block A, positive on block B, negative on block C.



Q3. The **position-time** graph of an object traveling along the x-axis is shown in the figure. The **average acceleration** between $t = 1$ s (point A) and $t = 3$ s (point B) is

- * zero
- * positive
- * negative
- * cannot be determined

Q4. A disk is rotating with **constant angular acceleration**. It changes its direction of rotation **from clockwise to counter-clockwise**. Which of the following graphs describes its angular velocity?

*

 *

*

*