

Physics 101

Spring Semester

Final Exam

Monday, July 05, 2021

2:00 pm - 4:00 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar

Dr. Hala Al-Jassar

Dr. Fatema Al Dosari

Dr. Nasser Demir

Dr. Tareq Al Refai

Dr. Abdul Khaleq

Dr. Belal Salameh

For Instructors use only

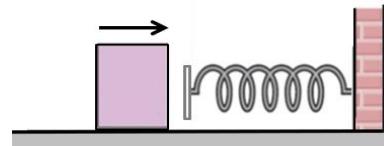
Grades:

#	SP1	SP2	SP3	SP4	SP5	SP6	SP7	LP1	LP2	LP3	Q1	Q2	Q3	Q4	Total
Pts	3	3	3	3	3	3	3	5	5	5	1	1	1	1	40

Important:

1. Answer all questions and problems (No solution = no points).
2. Full mark = 40 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$ (acceleration due to gravity on the earth).
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK


Part I: Short Problems (3 points each)

SP1. A 4 Kg block moving on a horizontal rough surface ($\mu_k = 0.6$) hits a relaxed spring with speed of 2 m/s as shown. If the maximum compression of the spring is 0.2 m , find the force constant of the spring (k).

$$E_f - E_i = -\mu_k mgd$$

$$\frac{1}{2}kd^2 - \frac{1}{2}mv_i^2 = -\mu_k mgd$$

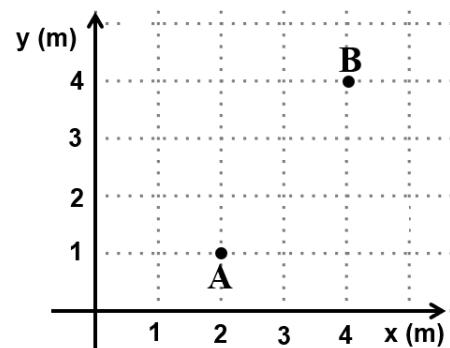
$$k = \frac{mv_i^2 - 2\mu_k mgd}{d^2} = \frac{(4)(2^2) - 2(0.6)(4)(10)(0.2)}{0.2^2} = 160 \text{ N/m}$$

Answer: $k = 160 \text{ N/m}$

SP2. Ball A ($m_A = 2 \text{ kg}$) collides elastically with ball B ($m_B = 4 \text{ kg}$). The initial kinetic energy of ball A is 60 J and of ball B is 90 J . After the collision, both balls have the same speed and move in different directions. Find the kinetic energy of ball A after the collision.

$$\sum K_i = \sum K_f$$

$$150 \text{ J} = \frac{1}{2}(2)v_f^2 + \frac{1}{2}(4)v_f^2 = 3v_f^2 \Rightarrow v_f^2 = 50$$


$$K_{A_f} = \frac{1}{2}(2)v_f^2 = 50 \text{ J}$$

Answer: $K_{A_f} = 50 \text{ J}$

SP3. Find the work done by the conservative force $\vec{F} = (6\hat{i} + 3\hat{j} - 5\hat{k}) \text{ N}$ to move a 3 kg block from point A to point B (see the figure).

$$\Delta\vec{r} = \vec{r}_B - \vec{r}_A = (4 - 2)\hat{i} + (4 - 1)\hat{j} = (2\hat{i} + 3\hat{j}) \text{ m}$$

$$W_F = \vec{F} \cdot \Delta\vec{r} = (6\hat{i} + 3\hat{j} - 5\hat{k}) \cdot (2\hat{i} + 3\hat{j}) = 21 \text{ J}$$

Answer: $W_F = 21 \text{ J}$

SP4. A particle of mass $m_1 = 0.1 \text{ kg}$ moving with velocity $\vec{v}_1 = (6\hat{i} + 5\hat{j}) \text{ m/s}$ collides with another particle of mass $m_2 = 0.2 \text{ kg}$ moving with velocity $\vec{v}_2 = (3\hat{i} - 7\hat{j}) \text{ m/s}$. After the collision, the two particles **stick together**. **What is the speed of the combined particles after the collision?**

$$\sum \vec{p}_i = \sum \vec{p}_f$$

$$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = (m_1 + m_2) \vec{v}_f$$

$$\vec{v}_f = \frac{m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i}}{(m_1 + m_2)} = \frac{0.1(6\hat{i} + 5\hat{j}) + 0.2(3\hat{i} - 7\hat{j})}{0.3} = (4\hat{i} - 3\hat{j}) \text{ m/s}$$

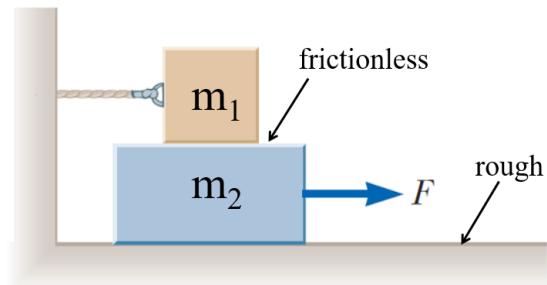
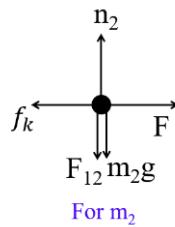
$$v_f = \sqrt{4^2 + (-3)^2} = 5 \text{ m/s}$$

Answer: $v_f = 5 \text{ m/s}$

SP5. Two blocks ($m_1 = 6 \text{ kg}$, $m_2 = 4 \text{ kg}$), are attached to the ends of a **massless rod** which pivots as shown. Initially the rod is held in the horizontal position and then released. **Calculate the magnitude and direction of the initial net torque on the system.**

$$\begin{aligned} \tau_{net} &= m_1 gr_1 - m_2 gr_2 \\ &= 60(0.3) - 40(0.6) = -6 \text{ N} \cdot \text{m} \end{aligned}$$

$$|\tau_{net}| = 6 \text{ N} \cdot \text{m}, \text{ into the page}$$

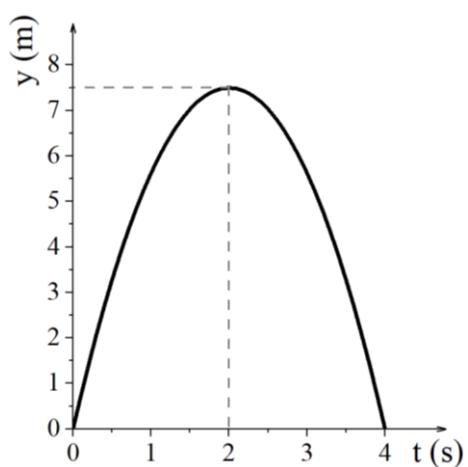


Answer: $|\tau| = 6 \text{ N} \cdot \text{m}$, into the page

SP6. Block 1 ($m_1 = 5 \text{ kg}$) is tied to a wall and is placed on top of block 2 ($m_2 = 10 \text{ kg}$). A horizontal force $F = 45 \text{ N}$ is applied to block 2 as shown. The coefficient of kinetic friction between the floor and block 2 is $\mu_k = 0.2$ and the surface between the two blocks is frictionless. Find the acceleration of block 2.

$$f_k = \mu_k(m_1 + m_2)g = 30 \text{ N}$$

$$F - f_k = m_2a$$

$$a = \frac{F - f_k}{m_2} = 1.5 \text{ m/s}^2$$


Answer: $a = 1.5 \text{ m/s}^2$

SP7. An object is in free-fall motion on Mars. Calculate the **acceleration due to gravity on Mars**, given the relation between **its height (y) and time (t)**, as shown in the figure.

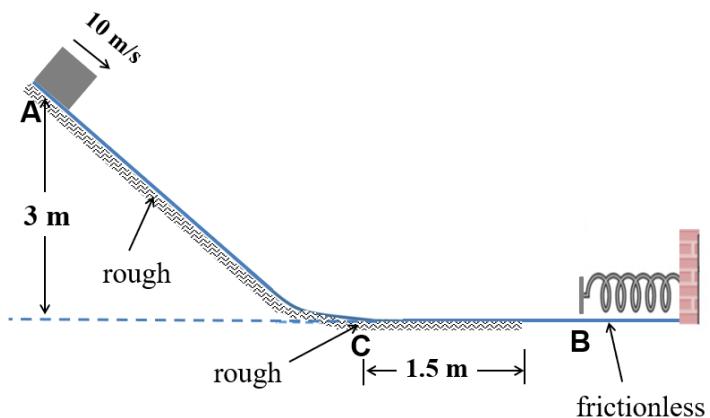
$$v_{y_f} = v_{y_i} - g't \Rightarrow 0 = v_{y_i} - 2g' \Rightarrow v_{y_i} = 2g'$$

$$\Delta y = v_{y_i}t - \frac{1}{2}g't^2$$

$$7.5 = (2g')(2) - \frac{1}{2}g'(2)^2 \Rightarrow g' = 3.75 \text{ m/s}^2$$

Answer: $g' = 3.75 \text{ m/s}^2$

Part II: Long Problems (5 points each)


LP1. A block ($m = 2 \text{ kg}$) is projected from point A with a speed of 10 m/s and strikes a relaxed spring at point B with speed of 3 m/s . The block compresses the spring a maximum distance of 0.2 m and moves back and stops at point C.

a) Find the force constant of the spring (k).

$$\frac{1}{2}mv_B^2 = \frac{1}{2}kx_{max}^2$$

$$k = \frac{mv_B^2}{x_{max}^2}$$

$$= \frac{2(3)^2}{0.2^2} = 450 \text{ N/m}$$

Answer: $k = 450 \text{ N/m}$

b) Find the magnitude of the frictional force on the block along the horizontal surface.

$$v_C^2 = v_B^2 + 2a\Delta x \Rightarrow 0 = 3^2 + 3a \Rightarrow a = -3 \text{ m/s}^2$$

$$|f_k| = m|a| = 6 \text{ N}$$

OR

$$\frac{1}{2}mv_B^2 = |f_k|d \Rightarrow |f_k| = \frac{mv_B^2}{2d} = 6 \text{ N}$$

Answer: $|f_k| = 6 \text{ N}$

c) Find the work done by gravity on the block between points A and C.

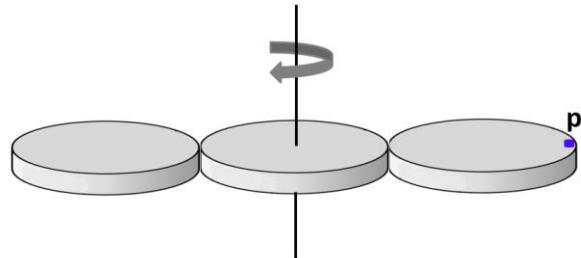
$$W_{mg} = mgh = (2)(10)(3) = 60 \text{ J}$$

Answer: $W_{mg} = 60 \text{ J}$

d) Find the total work done by friction on the block.

$$E_C - E_A = W_{f_k}$$

$$W_{f_k} = 0 - \left(\frac{1}{2}mv_A^2 + mgh \right) = -160 \text{ J}$$


Answer: $W_{f_k} = -160 \text{ J}$

LP2. A system of three identical circular disks, each of mass M and radius $R = 0.2 \text{ m}$ are welded together ($I_{system} = 1.14 \text{ kg} \cdot \text{m}^2$). The system starts to rotate **from rest** about an axis passing through the center of the middle disk with constant angular acceleration of 2 rad/s^2 as shown.

a) Find the kinetic energy of the system at $t = 10 \text{ s}$.

$$\omega_f = \omega_i + \alpha t = 0 + 2(10) = 20 \text{ rad/s}$$

$$K = \frac{1}{2} I \omega^2 = \frac{1}{2} (1.14)(20^2) = 228 \text{ J}$$

Answer: $K = 228 \text{ J}$

b) How many revolutions does the system make in the first 10 s.

$$\Delta\theta = \omega_i t + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} (2)(10^2) = 100 \text{ rad} = \left(\frac{100}{2\pi}\right) \text{ rev} = 15.9 \text{ rev}$$

Answer: $\Delta\theta = 15.9 \text{ rev}$

c) Calculate the linear speed of point p at the rim of the first disk at $t = 10 \text{ s}$.

$$v = r\omega = 3R\omega = 0.6(20) = 12 \text{ m/s}$$

Answer: $v = 12 \text{ m/s}$

d) Find the mass of each disk. (for each disk: $I_{cm} = \frac{1}{2} MR^2$)

$$I_{system} = I_{cm} + 2[I_{cm} + M(2R)^2]$$

$$1.14 = \frac{1}{2} MR^2 + 2 \left[\frac{1}{2} MR^2 + 4MR^2 \right] = 9.5MR^2$$


$$1.14 = 9.5M(0.2)^2 \Rightarrow M = 3 \text{ kg}$$

Answer: $M = 3 \text{ kg}$

LP3. A man starts pushing a 50 kg box at $t = 0\text{ s}$ along a straight line on a rough horizontal surface. At $t = 40\text{ s}$ the man removes his hand and the box slides to stop at $t = 60\text{ s}$. The velocity of the box as a function of time is shown in the figure.

a) Find the total distance covered by the box

$$d = \text{Area} = \frac{1}{2} (10)(1.2) + (30)(1.2) + \frac{1}{2} (20)(1.2) = 54\text{ m}$$

Answer: $d = 54\text{ m}$

b) Calculate the acceleration of the box when $t > 40\text{ s}$.

$$a = \text{slope} = \frac{-1.2}{20} = -0.06\text{ m/s}^2$$

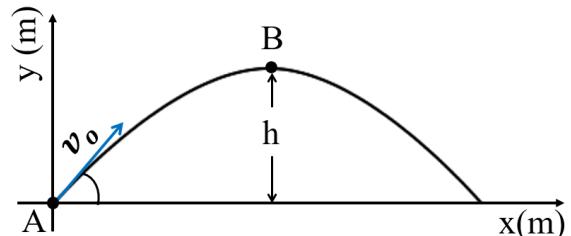
Answer: $a = -0.06\text{ m/s}^2$

c) Find the force of friction on the box.

between $t = 40\text{ s}$ and $t = 60\text{ s}$: $\sum F = f_k = ma = 50(-0.06) = -3\text{ N}$

Answer: $f_k = -3\text{ N}$

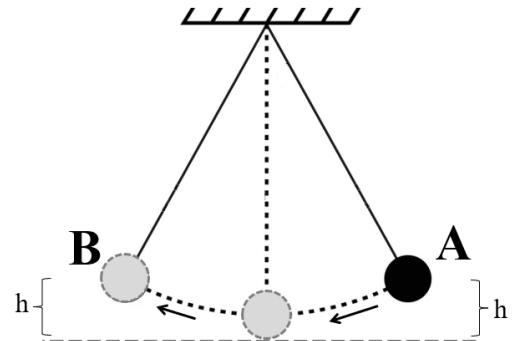
d) Find the work done by the man on the box between $t = 0\text{ s}$ and $t = 60\text{ s}$.


$$\sum W = \Delta K = 0$$

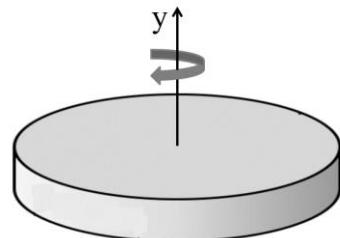
$$W_{\text{man}} + W_{f_k} = 0 \Rightarrow W_{\text{man}} = -W_{f_k} = f_k d = 3(54) = +162\text{ J}$$

Answer: $W_{\text{man}} = +162\text{ J}$

Part III: Questions (Choose the correct answer, one point each)**Q1.** A stone of mass m is projected from point A with speed v_0 and moves along the trajectory, as shown.**The total mechanical energy at point B is: (ignore air resistance)**


- * $\frac{1}{2}mv_0^2 + mgh$
- * mgh
- * $\frac{1}{2}mv_0^2 - mgh$
- * $\frac{1}{2}mv_0^2$

Q2. If an object is **in equilibrium**, which of the following statements **is not true**?


- * The velocity of the object is constant.
- * The acceleration of the object is zero.
- * The net force acting on the object is zero.
- * The object must be at rest.

Q3. Consider the simple pendulum shown in the figure. As the bob moves from point A to point B, **the work done on the bob by gravity and by tension, respectively are:**

- * positive, positive
- * positive, zero
- * zero, zero
- * zero positive

Q4. A disc is rotating clockwise about the y-axis as viewed from above with **a decreasing speed**. The direction of the angular acceleration is:

- * $+\hat{k}$
- * $-\hat{k}$
- * $+\hat{j}$
- * $-\hat{j}$

