Kuwait University

Physics Department

Physics 101

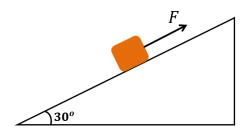
Fall Semester Second Midterm Exam Saturday, November 29, 2025 8:00 - 9:30 AM

Student's Name:		Serial Number:				
Student's Number	r:	Section:				
Choose your Instru	ctor's Name:					
Instructors: Drs.	Al Dosari, Al Jassar, Al Qattan, Al Smadi, Askar, Demir, Salameh,					
	Zaman					

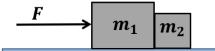
For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2	2	2	2	3	3	1	1	1	1	20
Pts												

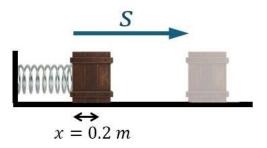

Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 20 points as arranged in the above table.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Please box your answers.
- 8. Cheating incidents will be processed according to the university rules.


GOOD LUCK

Part I: Short Problems (2 points each)

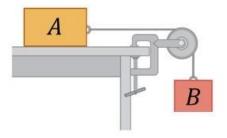
SP1. A block of mass m=22~kg is pulled by a constant force \vec{F} up a frictionless incline, as shown. If the block moves up the incline at <u>constant speed</u>, find the magnitude of the force $|\vec{F}|$.



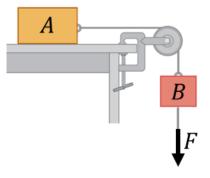
SP2. Two blocks $(m_1 = 7 kg, m_2 = 3 kg)$ are in contact on a horizontal, **frictionless** surface, as shown. A horizontal force $\vec{F} = 30 N$ is applied to block 1. **Find the magnitude of the force that block 1 exerts on block 2**.

SP3. A constant net force $\vec{F} = (3\hat{\imath} + 4\hat{\jmath}) N$ acts on an object that starts moving from the origin at t = 0 and reaches a position $\vec{r} = (12\hat{\imath} + 16\hat{\jmath}) m$ at t = 4s. Find the average power delivered by \vec{F} .

SP4. A box of mass 5 kg, which compresses a spring (k = 900 N/m) by 0.2 m, is released from **rest** such that the spring pushes the box along a **rough** horizontal surface ($\mu_k = 0.45$), as shown. **Find the maximum distance S that the box will travel.** (Note: The box is not attached to the spring).

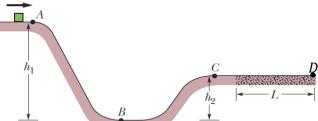


SP5. A 0.5 kg ball is connected to a light string and rotates in a vertical circle of radius 3 m, as shown. If the <u>string breaks</u> when the tension reaches its maximum value of 33 N, what is the maximum speed the ball can have while continuing to rotate?


Part II: Long Problems (3 points each)

LP1. Box A of mass 10 kg rests on a rough horizontal surface ($\mu_s = 0.4$, $\mu_k = 0.37$) is connected to box B of mass 3 kg by a light string that passes over frictionless light pulley, as shown.

a) Find the static friction force acting on box A.

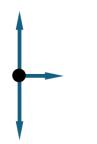

b) A pulling force $|\vec{F}|$ is applied to box B. Find the magnitude of the minimum pulling force $|\vec{F}|$ required to make the boxes start moving.

c) After the boxes start moving, find the magnitude of the pulling force $|\vec{F}|$ required to make the boxes move at constant speed.

LP2. A small block of mass $m = 0.5 \ kg$ passes through **point A** with a speed of $5 \ m/s$. Its path is frictionless until it reaches the section of length $L = 12 \ m$, where the coefficient of kinetic friction is μ_k . The indicated heights are $h_1 = 4 \ m$ and $h_2 = 2 \ m$.

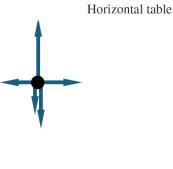
a) Find the change in the gravitational potential energy as the block moves from A to B.




b) Find the speed of the block at point C.

c) If the block completely stops at point D, find μ_k .

Part III: Questions (Choose the correct answer, one point each)


Q1. You pull horizontally on block B, as shown, causing both blocks to accelerate together as a unit. Which of the following correctly represents the free-body diagram of block B if the table is frictionless?

Q2. A 30 kg boy stands on a scale while riding in the elevator. If the scale reads 330 N, then the elevator

- downward with increasing speed.
- downward with decreasing speed.
- upward with decreasing speed.
- upward with constant speed.
- Q3. The work done by a radial force (\vec{F}_{rad}) on an object moving in a circle from point A to point B with increasing speed is:

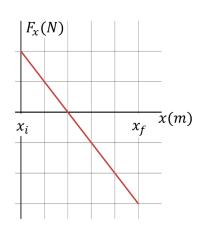
*
$$W = 0$$

$$* W = \Delta K$$

is moving:

*
$$W = |\vec{F}_{tan}| |\vec{S}|$$

*
$$W = |\vec{F}_{rad}||\vec{S}|$$


Q4. A particle is under the influence of a net force along the x-axis whose graph is shown. Which of the following statements is true about its initial speed (v_i) at x_i and its final speed (v_f) at x_f ?

*
$$v_i > v_f$$

*
$$v_i < v_f$$

*
$$v_i = v_f \neq 0$$

*
$$v_i = v_f = 0$$

