

Final Examination
Fall Semester 2025 – 2026

December 28, 2025
Time: 6:00 – 8:00 PM

Name: Student No:

Section No: Serial No:

Instructors: Drs. Ali, Al-Mumin, Lajko, Sharma & Vagenas

Fundamental constants

$$k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \text{ N.m}^2/\text{C}^2 \quad (\text{Coulomb constant})$$

$$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2) \quad (\text{Permittivity of free space})$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \quad (\text{Permeability of free space})$$

$$|e| = 1.60 \times 10^{-19} \text{ C} \quad (\text{Elementary unit of charge})$$

$$N_A = 6.02 \times 10^{23} \quad (\text{Avogadro's number})$$

$$g = 9.8 \text{ m/s}^2 \quad (\text{Acceleration due to gravity})$$

$$m_e = 9.11 \times 10^{-31} \text{ kg} \quad (\text{Electron mass})$$

$$m_p = 1.67 \times 10^{-27} \text{ kg} \quad (\text{Proton mass})$$

Prefixes of units

$$\begin{array}{ll} m = 10^{-3} & \mu = 10^{-6} \\ k = 10^3 & M = 10^6 \end{array}$$

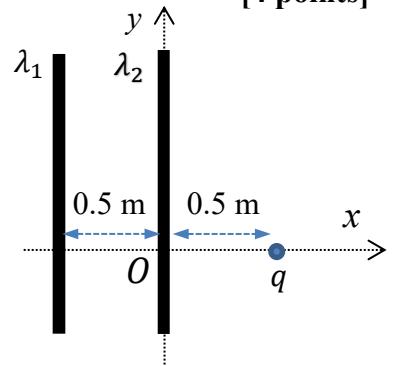
$$\begin{array}{ll} n = 10^{-9} & p = 10^{-12} \\ G = 10^9 & T = 10^{12} \end{array}$$

For use by Instructors only

Problems	1	2	3	4	5	6	7	8	9	10	Questions	Total
Marks												

Instructions to the Students:

1. Mobile or other electronic devices are **strictly prohibited** during the exam.
2. Programmable calculators, which can store equations, are not allowed.
3. Cheating incidents will be processed according to the university rules.

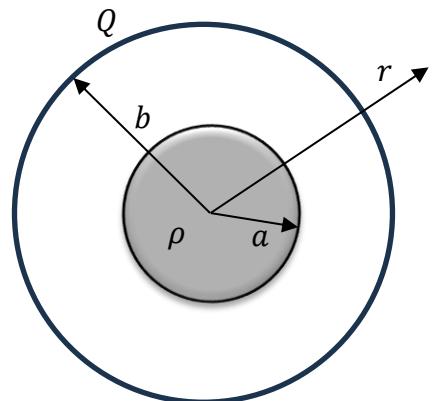

PART I: Solve the following problems. Show your solutions in detail.

1. Two very long uniformly charged lines with $\lambda_1 = -12 \text{ } \mu\text{C/m}$, $\lambda_2 = 18 \text{ } \mu\text{C/m}$ are placed parallel with the y -axis, as shown. A particle of charge $q = -4 \text{ } \mu\text{C}$ and mass $m = 4 \times 10^{-3} \text{ kg}$ is released on the x -axis as shown. Calculate the acceleration vector \vec{a} of q . [4 points]

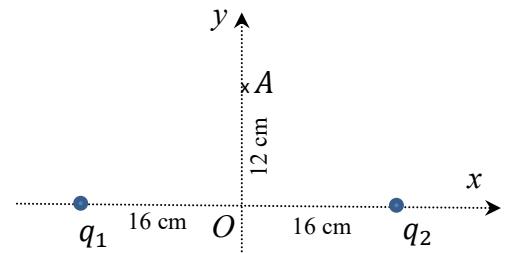
$$\vec{E} = \frac{\lambda_1}{2\pi\epsilon_0 1m} \hat{i} + \frac{\lambda_2}{2\pi\epsilon_0 0.5m} \hat{i} = 4.32 \times 10^5 \frac{\text{N}}{\text{C}} \hat{i}$$

$$\vec{F} = q\vec{E} = -(1.73 \text{ N})\hat{i}$$

$$\vec{a} = \frac{\vec{F}}{m} = -(432.5 \frac{\text{m}}{\text{s}^2})\hat{i}$$



2. A sphere of radius $a = 5 \text{ cm}$ with a uniform volume charge density $\rho = -3 \text{ } \mu\text{C/m}^3$ is inside a concentric thin conducting spherical shell of radius $b = 10 \text{ cm}$ and charge $Q = 1.26 \text{ nC}$. Calculate the magnitude and direction of the net electric field \vec{E} at $r = 12 \text{ cm}$. [3 points]


$$\text{Gauss's Law: } \oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\epsilon_0} \Rightarrow E(4\pi r^2) = \frac{Q_{encl}}{\epsilon_0}$$

$$Q_{encl} = \rho \frac{4\pi}{3} a^3 + Q = -0.311 \text{ nC}$$

$$E = \frac{Q_{encl}}{\epsilon_0 4\pi r^2} = -194.2 \text{ N/C, inward}$$

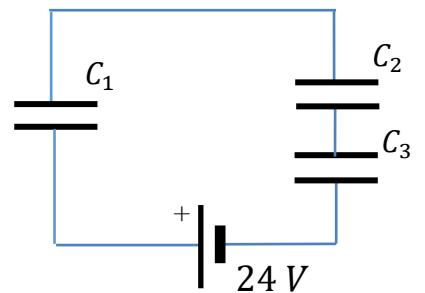
3. Two charges $q_1 = q_2 = 12 \mu\text{C}$ are fixed on the x -axis, as shown. A third charge $q_3 = -4 \mu\text{C}$ with mass $m = 0.05 \text{ kg}$ is released from rest at point A . Calculate the speed of q_3 at point O . [3 points]

Mechanical Energy conservation:

$$U_{q_3}^A = U_{q_3}^O + K_{q_3}^O = U_{q_3}^O + \frac{m}{2}v^2$$

$$U_{q_3}^A = q_3(V_A^1 + V_A^2) = q_3 \left(k \frac{q_1}{0.2 \text{ m}} + k \frac{q_2}{0.2 \text{ m}} \right) = -4.32 \text{ J}$$

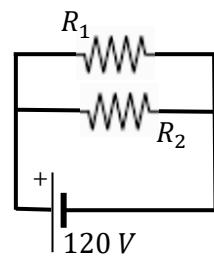
$$U_{q_3}^O = q_3(V_O^1 + V_O^2) = q_3 \left(k \frac{q_1}{0.16 \text{ m}} + k \frac{q_2}{0.16 \text{ m}} \right) = -5.4 \text{ J}$$


$$U_{q_3}^A - U_{q_3}^O = \frac{m}{2}v^2 \Rightarrow v = 6.57 \text{ m/s}$$

4. A network of capacitors $C_1 = 4 \mu\text{F}$, $C_2 = 6 \mu\text{F}$, and $C_3 = 12 \mu\text{F}$, is charged by a battery, as shown. Determine the potential difference across C_2 . [3 points]

$$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right)^{-1} = 2 \mu\text{F}$$

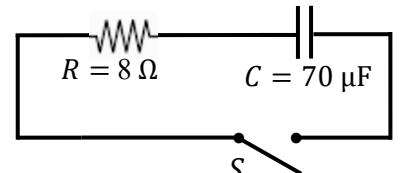
$$Q = C_{eq}V = 48 \mu\text{C} \quad Q_2 = Q$$


$$\text{so } V_2 = \frac{Q}{C_2} = 8 \text{ V}$$

5. Two resistors, $R_1 = 20 \Omega$ and R_2 , are connected across a 120-V emf device as shown so that 16 A current flows through the emf device. What is the value of R_2 ? [3 points]

$$R_{eq} = \frac{V}{I} = 7.5 \Omega$$

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2} \Rightarrow R_2 = 12 \Omega$$


6. In the circuit below, the capacitor has an initial charge $Q_0 = 400 \mu\text{C}$. The switch S is closed at $t = 0$. Calculate the current in the circuit at the time when the energy stored in the capacitor is $\frac{1}{9}$ of its initial value. [4 points]

$$q(t) = Q_0 e^{-\frac{t}{RC}} \Rightarrow U = \frac{Q_0^2 (e^{-\frac{t}{RC}})^2}{2C} = U_0 e^{-\frac{2t}{RC}}$$

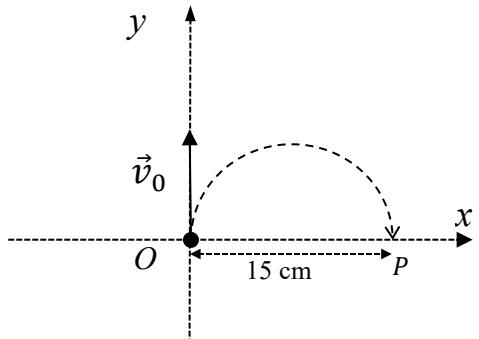
$$\frac{U_0}{9} = U_0 e^{-2t_1/RC} \Rightarrow e^{-t_1/RC} = \frac{1}{3}$$

$$\Rightarrow I = -\frac{dq}{dt} = \frac{Q_0}{RC} e^{-t_1/RC}$$

$$I = \frac{Q_0}{RC} e^{-\frac{t_1}{RC}} = \frac{Q_0}{RC} \frac{1}{3} = 0.24 \text{ A}$$

7. A particle of charge $q = 4 \text{ C}$ enters a region of uniform electric and uniform magnetic fields with initial velocity $\vec{v} = (6 \text{ m/s})\hat{i}$. The uniform magnetic field is $\vec{B} = (0.5 \text{ T})\hat{i} + (2.0 \text{ T})\hat{j}$ and the net initial force on the particle is $\vec{F} = (12 \text{ N})\hat{i} + (16 \text{ N})\hat{k}$. Find the uniform electric field \vec{E} . **[3 points]**

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} \Rightarrow \vec{E} = \frac{\vec{F} - q\vec{v} \times \vec{B}}{q}$$

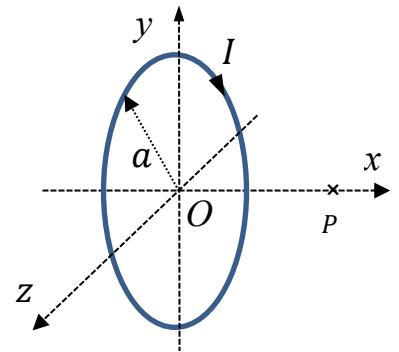

$$\vec{E} = \left(3 \frac{\text{N}}{\text{C}}\right)\hat{i} - \left(8 \frac{\text{N}}{\text{C}}\right)\hat{k}$$

8. An electron at point O has a velocity $\vec{v}_0 = (1.6 \times 10^6 \frac{\text{m}}{\text{s}})\hat{j}$. Find the magnitude and the direction of the magnetic field that will cause the electron to follow the semi-circular path from O to P . **[3 points]**

$$R = \frac{0.15 \text{ m}}{2} = 0.075 \text{ m}$$

$$R = \frac{mv_{\perp}}{|q|B} \Rightarrow B = \frac{mv_{\perp}}{|q|R} = 1.21 \times 10^{-4} \text{ T}$$

Direction is into the page or $-\hat{k}$.

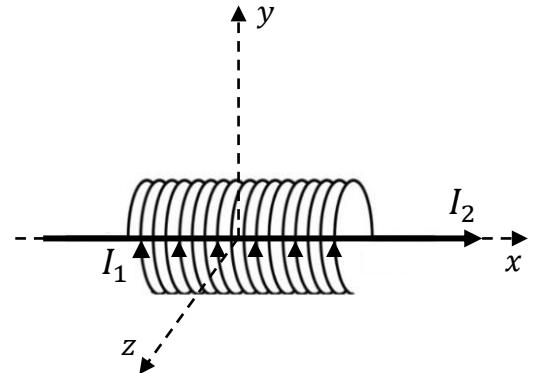


9. A circular current loop centred at the origin has radius $a = 10 \text{ cm}$ and current $I = 5 \text{ A}$. The symmetry axis of the loop is the x -axis. If at point P , shown in the figure, the magnitude of the magnetic field is $\frac{1}{2}$ of that at the origin, find the distance of point P from the origin. **[3 points]**

$$B_P = \frac{1}{2} B_O$$

$$\frac{\mu_0 I a^2}{2(x^2+a^2)^{3/2}} = \frac{1}{2} \frac{\mu_0 I a^2}{2a^3}$$

$$x = 0.0766 \text{ m}$$

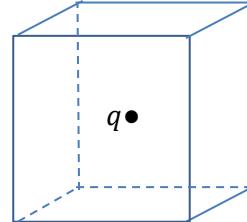

10. A 2-m long solenoid has 3000 turns, radius 6 cm, and current $I_1 = 20 \text{ mA}$. The solenoid is placed on the x -axis, as shown. A very long straight wire is inserted along the x -axis with current $I_2 = 6 \text{ A}$. Find the magnitude of the net magnetic field at 2 cm distance from the origin on the $+y$ -axis. **[3 points]**

$$\vec{B}_1 = -\mu_0 n I_1 \hat{i} = -(3.77 \times 10^{-5} \text{ T}) \hat{i}$$

$$\vec{B}_2 = \frac{\mu_0 I_2}{2\pi d} \hat{k} = (6 \times 10^{-5} \text{ T}) \hat{k}$$

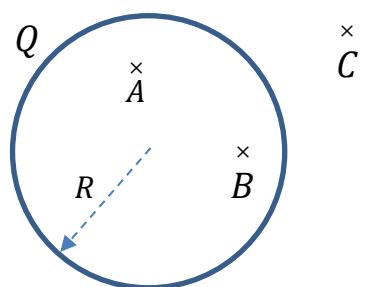
$$\vec{B} = \vec{B}_1 + \vec{B}_2$$

$$B = \sqrt{B_1^2 + B_2^2} = 7.09 \times 10^{-5} \text{ T}$$


PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

1. If two charged particles, with q charge on each, are separated by a distance d , the magnitude of the force between them is F . What is the magnitude of the force between them if each charge is doubled and the separation changes to $d/2$?

- a) F .
- b) $4F$.
- c) $16F$.
- d) $F/4$.


2. A point charge q is placed at the centre of a cube, as shown. What is the electric flux through one face of the cube?

- a) $\frac{q}{\epsilon_0}$.
- b) $\frac{q}{2\epsilon_0}$.
- c) $\frac{q}{3\epsilon_0}$.
- d) $\frac{q}{6\epsilon_0}$.

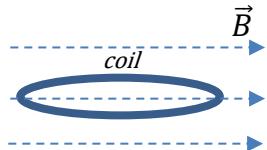
3. A conducting sphere with charge $Q > 0$ has radius R . At the points A , B , and C the electric potential is V_A , V_B , and V_C , respectively. Which relation is correct?

- a) $V_A = V_C$.
- b) $V_B = V_C$.
- c) $V_A < V_C$.
- d) $V_B > V_C$.

4. If N identical capacitors, each have capacitance C , are connected in series. The equivalent capacitance of this network is

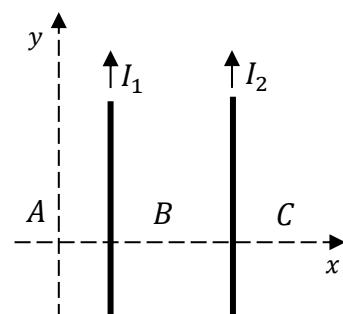
- a) C/N .
- b) NC .
- c) N^2C .
- d) C .

5. If a current through a resistor is increased by a factor of 2, the dissipated power


- a) decreases by a factor of 2.
- b) increases by a factor of 2.
- c) decreases by a factor of 4.
- d) increases by a factor of 4.

6. In an $R-C$ circuit after the switch is closed at time $t = 0$, the current will be $\frac{1}{e}$ of its initial value at $t_1 = \tau$. The current will be $\frac{1}{e^2}$ of its initial value at

- a) $t_2 = \tau/2$.
- b) $t_2 = 2\tau$.
- c) $t_2 = \tau^2$.
- d) $t_2 = 2\tau^2$.


7. A coil is placed in a magnetic field so that the plane of the coil is parallel to the direction of the magnetic field. The magnitude of the magnetic flux through the coil can be changed

- a) by changing the magnitude of the magnetic field.
- b) by changing the area of the coil.
- c) by changing the angle between the direction of the magnetic field and the plane of the coil.
- d) by reversing the magnetic field direction suddenly without changing its magnitude.

8. Two parallel wires carrying currents I_1 , and I_2 are in the xy -plane as shown. On the x -axis, the magnitude of the net magnetic field can be zero

- a) in region A .
- b) in region B .
- c) in region C .
- d) in none of the regions.

