

Physics 101

Fall Semester
 Second Midterm Exam
 Saturday, February 6, 2021
 9:00 am – 11:00 am

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Fatema Al Dosari
 Dr. Nasser Demir

Dr. Tareq Al Refai
 Dr. Belal Salameh
 Dr. Abdel Khaleq

For Instructors use only

#	Q1	Q2	Q3	Q4	Q5	SP1	SP2	SP3	SP4	SP5	SP6	SP7	SP8	SP9	LP1	LP2	LP3	Total
Pts	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	4	4	40

Important:

1. Answer all questions and problems.
2. Full mark = 40 points as arranged in the above table.
 - i) 5 Questions
 - ii) 9 Short Problems
 - iii) 3 Long Problems
3. No solution = 0 points.
4. **Use SI units**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK

Part I: Questions (Choose the correct answer, 2 points each)

Q1. A box is accelerated by a force of 100 N. After 10 s, a second force of 100 N is exerted on the box in the opposite direction, so that **the two forces cancel each other, then the box**

- * is brought to rest immediately.
- * is brought to rest within 10 s.
- * will continue to move with decreasing speed.

will continue to move with constant speed.

Q2. In a uniform circular motion, **the vectors that point toward the center of the circular path are:**

acceleration and net force.

- * velocity and acceleration.
- * velocity and net force.
- * velocity, acceleration, and net force.

Q3. A man pushes a block up an incline at **constant speed**. The block's kinetic energy is **K** and the potential energy is **U**. **As the block moves up the incline,**

- * Both **K** and **U** increase.
- * **K** increases and **U** remains the same.

K remains the same and **U** increases.

- * **K** decreases and **U** increases.

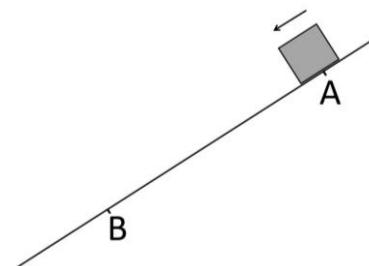
Q4. A 60 kg student is standing on a scale in an elevator. If the scale reads 650 N, then the elevator is:

- * moving downward with increasing speed.

moving downward with decreasing speed.

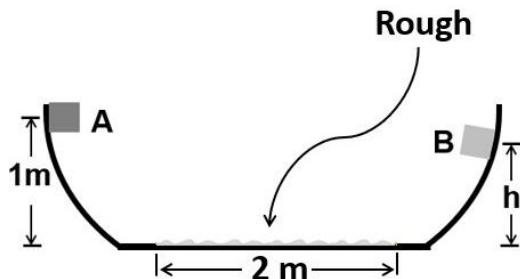
- * moving upward with decreasing speed.
- * moving upward with constant speed.

Q5. A block slides along **a rough incline**. Its total mechanical energy (E)


and potential energy (U) respectively at point A are (70 J and 50 J) and at point B are (40 J and 40 J). **The work done by the frictional force on the block between points A and B is:**

* – 10

* – 20 J

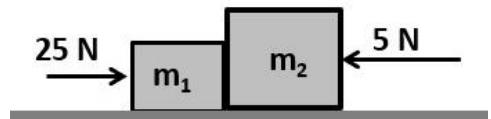

– 30 J

* – 40 J

Part II: Short Problems (2 points each)

SP1. A 2 kg block is released **from rest** at point A and slides on the shown track. The track is frictionless except a portion from the **flat part which is rough** ($\mu_k = 0.2$). **If the block stops momentarily at point B, find the value of h.**

$$E_f - E_i = -\mu_k mgd$$


$$mgh - mg(1) = -\mu_k mgd$$

$$h = 1 - \mu_k d = 1 - (0.2)(2) = 0.6 \text{ m}$$

SP2. In the shown figure, if $m_1 = 3 \text{ kg}$, $m_2 = 2 \text{ kg}$ and the horizontal surface is frictionless, **find the magnitude of the force exerted on block 1 by block 2 (F_{21}).**

$$\vec{a} = \frac{\sum \vec{F}}{m_1 + m_2} = \frac{+20 \hat{i}}{5} = +4 \hat{i} \text{ m/s}^2$$

$$25 - F_{21} = m_1 a = 12 \Rightarrow F_{21} = 13 \text{ N}$$

SP3. A box of mass $m = 32 \text{ kg}$ rests on the bed of a truck. If the coefficients of friction between the box and the truck's bed are ($\mu_s = 0.4$ and $\mu_k = 0.3$). **Find the minimum acceleration of the truck so the box slides.**

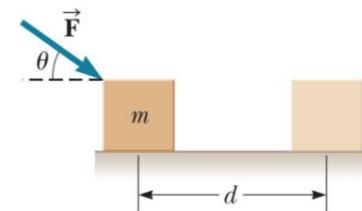
$$ma_{min} = f_{smax} = \mu_s mg$$

$$a_{min} = \mu_s g = 4 \text{ m/s}^2$$

SP4. A box moves on a **frictionless horizontal surface** under the influence of the two forces $\vec{F}_1 = (50\hat{i} + 60\hat{j}) \text{ N}$, $\vec{F}_2 = (120\hat{i} + 80\hat{j}) \text{ N}$. Find the total power delivered to the block when its velocity is $\vec{v} = (5\hat{i} + 3\hat{j}) \text{ m/s}$.

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 = (170\hat{i} + 140\hat{j}) \text{ N}$$

$$P = \vec{F}_{net} \cdot \vec{v} = 170(5) + 140(3) = 1270 \text{ W}$$


OR

$$P_1 = \vec{F}_1 \cdot \vec{v} = (50)(5) + (60)(3) = 430 \text{ W}$$

$$P_2 = \vec{F}_2 \cdot \vec{v} = (120)(5) + (80)(3) = 840 \text{ W}$$

$$P = P_1 + P_2 = 1270 \text{ W}$$

SP5. A 3 kg block is pushed a distance $d = 5 \text{ m}$ along a frictionless horizontal floor by a constant applied force of magnitude $F = 16 \text{ N}$ directed at an angle $\theta = 36.9^\circ$ as shown in the figure. Determine the work done on the block by the applied force.

$$W_F = \vec{F} \cdot \vec{d} = F d \cos(\theta)$$

$$W_F = (16)(5) \cos(36.9^\circ) = 64 \text{ J}$$

SP6. How many revolutions per minute (rpm) would a **20 m diameter** Ferris wheel need to make so that the passengers feel “weightless” at the top-most point?

$$n - mg = -\frac{mv^2}{R}$$

$$\text{feel weightless} \Rightarrow n = 0 \Rightarrow mg = \frac{mv^2}{R} \Rightarrow v = \sqrt{Rg} = 10 \text{ m/s}$$

$$f = v \left(\frac{60}{2\pi R} \right) = 10 \left(\frac{60}{2(3.14)(10)} \right) = 9.55 \text{ rpm}$$

SP7. A block of mass m is **at rest** at point $(0, 0)$ m. A net force $\vec{F} = (4\hat{i} + 2\hat{j})$ N acts on the block **for 10 s** to move it to the point $(20, 10)$ m. **Find the mass of the block.**

$$\Delta\vec{r} = \vec{v}_o t + \frac{1}{2}\vec{a}t^2$$

$$(20\hat{i} + 10\hat{j}) = 0 + 50\vec{a}$$

$$\Rightarrow \vec{a} = (0.4\hat{i} + 0.2\hat{j}) \text{ m/s}^2$$

$$\vec{F} = m\vec{a}$$

$$4\hat{i} + 2\hat{j} = m(0.4\hat{i} + 0.2\hat{j})$$

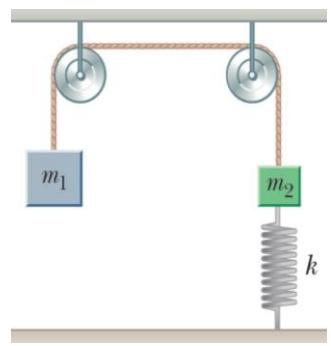
$$\Rightarrow m = 10 \text{ kg}$$

$$\Delta\vec{r} = \vec{v}_o t + \frac{1}{2}\vec{a}t^2$$

$$(20\hat{i} + 10\hat{j}) = 0 + 50\vec{a}$$

$$\Rightarrow \vec{a} = (0.4\hat{i} + 0.2\hat{j}) \text{ m/s}^2$$

$$\vec{v} = \vec{v}_o + \vec{a}t = (4\hat{i} + 2\hat{j})\text{m/s} \Rightarrow v = \sqrt{4^2 + 2^2} = \sqrt{20} \text{ m/s}$$


$$\vec{r} = (20\hat{i} + 10\hat{j}) \text{ m}$$

$$Work = \vec{F} \cdot \vec{r} = \Delta K = \frac{1}{2}mv^2 - 0$$

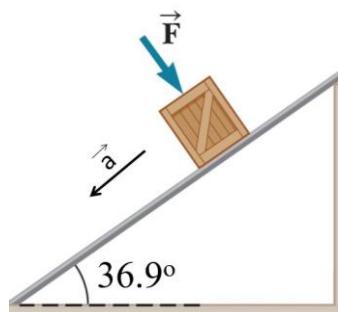
$$(4)20 + 2(10) = \frac{1}{2}m(20) \Rightarrow m = \frac{100}{10} = 10 \text{ kg}$$

OR

SP8. Two blocks ($m_1 = 8 \text{ kg}$, $m_2 = 2 \text{ kg}$) are connected by a light cord that passes over two frictionless pulleys as shown in the figure. The block of mass m_2 is attached to a spring of force constant $k = 500 \text{ N/m}$. If the system is **released from rest**, and the **spring is initially not stretched or compressed**, **find the maximum displacement d of m_2 .**

$$E_i = E_f$$

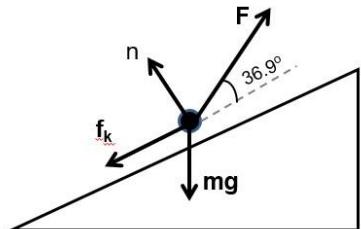
$$0 = m_2gd + \frac{1}{2}kd^2 - m_1gd$$


$$d = \frac{(m_1 - m_2)g}{\frac{1}{2}k} = 0.24 \text{ m}$$

SP9. The force $F = 16 \text{ N}$ is applied on a 3 kg box perpendicular to the rough incline ($\mu_k = 0.3$). **With what acceleration will the box slide down?**

$$n = F + mg \cos(36.9^\circ) = 16 + 30 \cos(36.9^\circ) = 40 \text{ N}$$

$$mg \sin(36.9^\circ) - \mu_k n = ma$$


$$a = \frac{mg \sin(36.9^\circ) - \mu_k n}{m} = \frac{18 - 12}{3} = 2 \text{ m/s}^2$$

Part III: Long Problems (4 points each)

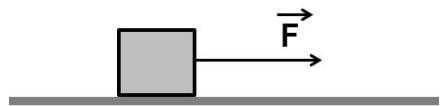
LP1. A man pulls a 20 kg box and the box moves with **constant speed** up a **rough** ramp as shown in the figure. The length of the ramp is 3 m and the man pulls with a force of $F = 200 \text{ N}$.

a) Draw the free body diagram for the box

b) Find the work done on the box by gravity

$$W_{mg} = -mgh = -mgL \sin(30^\circ) = -(20)(10)(3)(\sin(30^\circ)) = -300 \text{ J}$$

c) Find the work done on the box by the man


$$W_F = |\vec{F}| |\vec{d}| \cos(36.9^\circ) = 200(3)(0.8) = 480 \text{ J}$$

d) Find the work done on the box by the normal force n .

$$W_n = 0$$

LP2. A constant horizontal force F is applied on the 20 kg box and the box moves with constant speed on a rough horizontal surface ($\mu_k = 0.5$) as shown in the figure.

a) Find the magnitude of the friction force.

$$f_k = \mu_k mg = (0.5)(200) = 100 \text{ N}$$

b) Find the magnitude of the applied force.

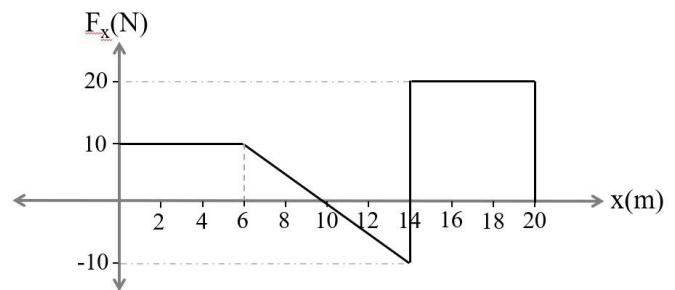
$$F = f_k = 100 \text{ N}$$

c) Find the total work done on the box.

$$\text{Since } \vec{v} \text{ is constant} \Rightarrow W_{total} = 0$$

d) With what acceleration will the box move after removing the applied force F ?

$$f_k = ma = 20 a$$


$$-100 \text{ N} = 20 a \Rightarrow a = -5 \text{ m/s}^2$$

LP3. An object of mass 4.8 kg rests on a frictionless horizontal surface. A variable force is applied on the object to move it from the origin along the x-axis. The force as a function of position is shown in the graph.

a) What is the speed of the object at $x = 6 \text{ m}$.

$$W = \frac{1}{2}m(v_f^2 - v_i^2) = \text{Area}$$

$$60 \text{ J} = 2.4(v_f^2 - 0) \Rightarrow v(6 \text{ m}) = 5 \text{ m/s}$$

b) What is the work done on the object by the force F_x as it moves from $x = 0 \text{ m}$ to $x = 20 \text{ m}$?

$$W = \text{Area} = 6(10) + 6(20) = 180 \text{ J}$$

c) At what position, if any, does the acceleration change from positive to negative.

At $x = 10 \text{ m}$

d) At what position, if any, does the direction of the velocity change from positive to negative.

None