

Physics 101

Fall Semester
 Second Midterm Exam
 Saturday, November 16, 2019
 9:00 am - 10:30 am

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

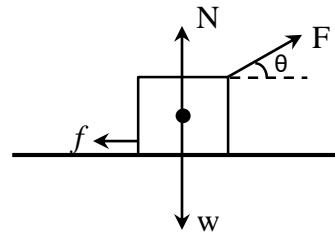
Prof. Yacoub Makdisi
 Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Nasser Demir
 Dr. Fatema Al Dosari

Dr. Abdul Mohsen
 Dr. Tareq Al Refai
 Dr. Abdel Khaleq
 Dr. Belal Salameh

For Instructors use only

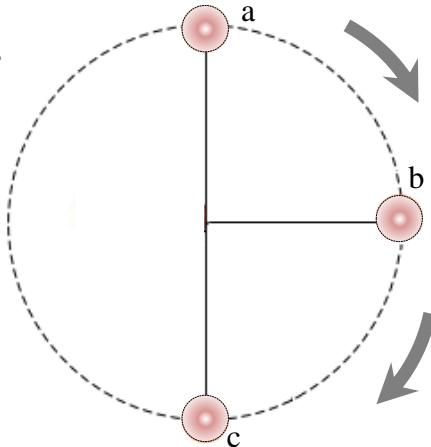
#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	1	1	2	2	2	2	2	3	3	20

Important:

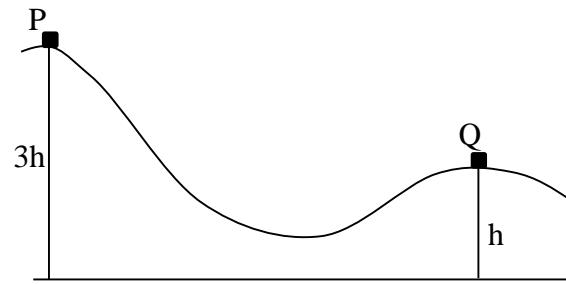

1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)


Q1. A person pulls on a block by applying a force (F) and the block remains at **rest**. (w) is the weight, (N) is the normal force, and (f) is the frictional force. **Which of the following relations is correct?**

- * $F = f$; $N = w$
- * $F > f$; $N > w$
- * $F < f$; $N < w$
- * $F > f$; $N < w$


Q2. A small ball of mass (m) is attached to a cord and rotates **vertically** as shown. If the tensions at points a, b, and c are T_a , T_b , and T_c , respectively, then

- * $T_a = T_b = T_c$
- * $T_a < T_b < T_c$
- * $T_a > T_b > T_c$
- * $T_a = T_c < T_b$

Q3. A block is released from **rest** at point P and slides along a **frictionless track**, as shown. **When it reaches the point Q, its speed is:**

- * $2g\sqrt{2h}$
- * $2\sqrt{gh}$
- * $2gh$
- * $4gh$

Q4. The **net work** w accelerates a car from **rest** to a speed of magnitude v . **How much work is needed to accelerate the car from v to $2v$?**

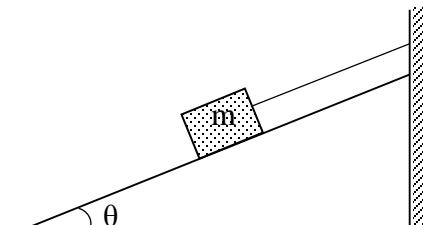
* w

* $2w$

* $3w$

* $4w$

Part II: Short Problems (2 points each)


SP1. The block shown in the figure is stationary (**in static equilibrium**). Given: $m = 6 \text{ kg}$ and $\theta = 37^\circ$.

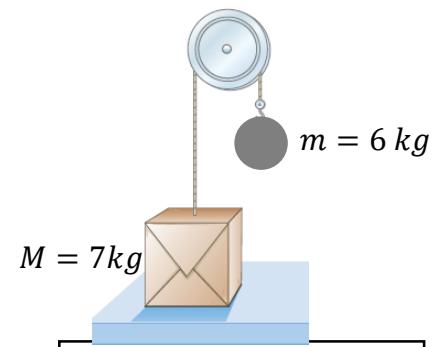
What is the tension in the cord?

$$\sum F = 0$$

$$T - m g \sin(\theta) = 0$$

$$T = m g \sin(\theta) = 36.1 \text{ N}$$

Answer: $T = 36.1 \text{ N}$

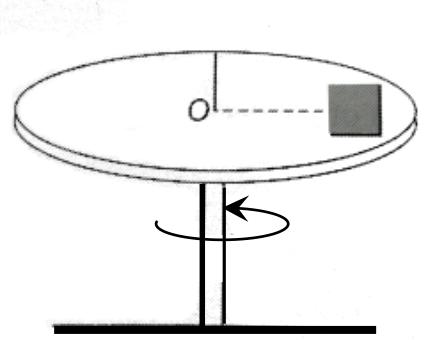

SP2. A box ($M = 7 \text{ Kg}$) rests on a table. A ball of mass ($m = 6 \text{ kg}$) and the box are attached by a rope that passes over a pulley, as shown. **What is the normal force that the table exerts on the box?**

$$T + N - Mg = 0$$

$$N = Mg - T$$

$$T = mg = 60 \text{ N}$$

$$N = 70 - 60 = 10 \text{ N}$$


Answer: $N = 10 \text{ N}$

SP3. The coefficient of static friction between the block and the surface of a turntable is $\mu_s = 0.3$. The turntable rotates at 20 revolutions per minute. **What is the distance from the center of the turntable at which the block will start to slide?**

$$f_{s,max} = \frac{mv^2}{R}$$

$$\mu_s mg = \frac{mv^2}{R} = m \frac{(20 \times 2\pi R)^2}{R(60)^2}$$

$$R = \frac{\mu_s g (60)^2}{(20)^2 \times 4\pi^2} = 0.68 \text{ m}$$

Answer: $R = 0.68 \text{ m}$

SP4. A resultant force acting on a 5 kg mass changes its speed from 15 m/s to 25 m/s during a period of 20 s .

Find the average power of the resultant force during the given time period.

$$w = \Delta K = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

$$= \frac{1}{2}(5)(625) - \frac{1}{2}(5)(225) = 1000 \text{ J}$$

$$P = \frac{W}{t} = \frac{1000}{20} = 50 \text{ W}$$

Answer: $P = 50 \text{ W}$

SP5. A 4 Kg block moving on a horizontal rough surface ($\mu_k = 0.6$) slides into a relaxed spring of force constant $k = 200 \text{ N/m}$ that is attached to a wall. **If the maximum compression of the spring is 20 cm , find the speed of the block just before it touches the spring,**

$$w_{total} = \Delta K$$

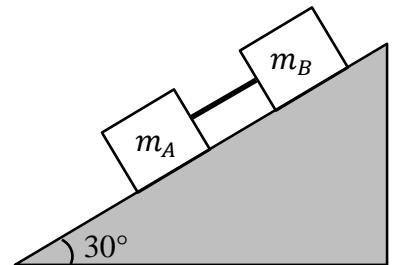
$$w_{f_k} + w_{F_s} = \Delta K$$

$$-\mu_k mg d_{max} + \frac{1}{2}k(0^2 - d_{max}^2) = 0 - \frac{1}{2}mv_i^2$$

$$-(0.6)(4)(10)(0.2) - \frac{1}{2}(200)(0.2)^2 = -\frac{1}{2}(4)(v_i^2) \Rightarrow v_i = 2.1 \text{ m/s}$$

Answer: $v_i = 2.1 \text{ m/s}$

Part III: Long Problems (3 points each)


LP1. Two blocks, ($m_A = m_B = 5 \text{ Kg}$) are connected by a **massless rod of fixed length**, slide down a 30° inclined plane, as shown. The coefficient of kinetic friction between the plane and block A is $\mu_A = 0.2$ and between the plane and block B is $\mu_B = 0.3$.

a) **Find the acceleration of the blocks.**

$$2m_A g \sin \theta - \mu_A m_A g \cos \theta - \mu_B m_B g \cos \theta = 2m_A a$$

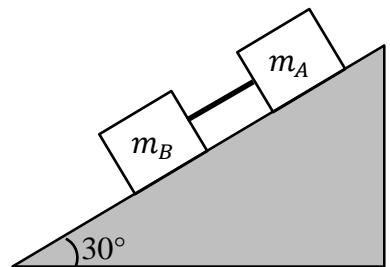
$$10 - 0.2(8.66) - 0.3(8.66) = 2a$$

$$a = 2.84 \text{ m/s}^2$$

Answer: $a = 2.84 \text{ m/s}^2$

b) **Find the tension in the rod.**

$$m_A g \sin \theta - T - \mu_A m_A g \cos \theta = m_A a$$


$$T = m_A (g \sin \theta - \mu_A g \cos \theta - a)$$

$$= 5(10 \sin 30 - 0.2 (10) (\cos 30) - 2.84) = 2.14$$

Answer: $T = 2.14 \text{ N}$

c) If the initial positions of the blocks are reversed with m_B starting down the slope as shown in the figure, then the blocks acceleration will

- i) Increase
- ii) Decrease
- iii) Not change

LP2. An elevator of mass $m = 500 \text{ kg}$ starts from **rest** and moves **downward** with acceleration $a = 2 \text{ m/s}^2$.

The elevator moves down a distance of 25 m.

a) Calculate the work done by gravity on the elevator.

$$w_g = mg d \\ = 500 \times 10 \times 25 = 125000 \text{ J}$$

Answer: $w_g = 125000 \text{ J}$

b) Calculate the work done by the tension.

$$mg - T = ma \\ T = m(g - a) = 4000 \text{ J} \\ w_T = |T| |\vec{s}| \cos \theta = -4000(25) = -100000 \text{ J}$$

Answer: $w_T = -100000 \text{ J}$

c) What is the speed of the elevator after it moves 25 m down? (use work-energy theorem)

$$w_{tot} = w_{mg} + w_T = 25000 \text{ J}$$

$$w_{tot} = \Delta K = \frac{1}{2} m v_f^2$$

$$v_f = 10 \text{ m/s}$$

Answer: $v_f = 10 \text{ m/s}$