

Physics 101

Fall Semester
 Second Midterm Exam
 Saturday, November 25, 2017
 12:00 pm - 01:30 pm

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Fatema Al-Jassar
 Dr. Nasser Dabbagh

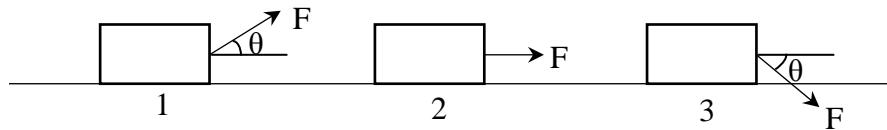
Dr. Abdul Mohsen
 Dr. Tareq Al Refai
 Dr. Abdul Khaleq
 Dr. Belal Salamah

For Instructor use only

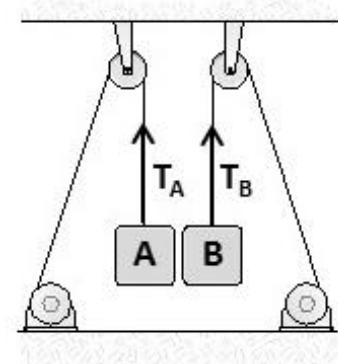
Grades:

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	1	1	2	2	2	2	2	3	3	20
Pts												

Important:


1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK


Part I: Questions (Choose the correct answer, one point each)

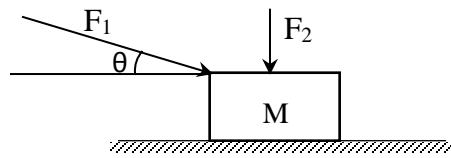
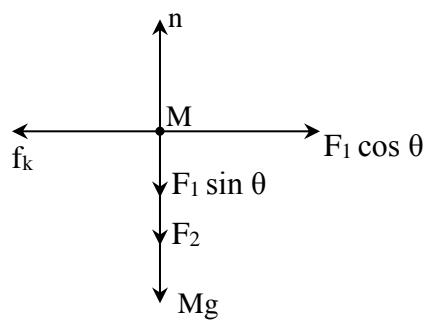
Q1. A block is pulled by an applied force of magnitude F and moved to the right on a rough horizontal surface as shown in the three cases below. **If the frictional forces acting on the block in the given cases are f_1 , f_2 and f_3 respectively, then**

- * $f_1 = f_2 = f_3$
- * $f_1 < f_2 < f_3$
- * $f_1 = f_3 \neq f_2$
- * $f_1 > f_2 > f_3$

Q2. Two equal masses ($M_A = M_B = M$) are raised at **constant velocities** by light ropes that run over massless pulleys, as shown. Mass A is raised twice as fast as mass B ($V_A = 2V_B$). The magnitudes of the tensions in the ropes are T_A and T_B , respectively. If the power supplied by the tension to raise M_A and M_B are P_A and P_B respectively, then

- * $T_A = T_B; P_A = P_B$.
- * $T_A = T_B; P_A = 2P_B$.
- * $T_A = 2T_B; P_A = P_B$.
- * $T_A = 2T_B; P_A = 2P_B$.

Q3. Is it possible for **an elevator** to have an acceleration of **magnitude $|\vec{a}|$ greater than g** ?



- * No, because once $|\vec{a}| = g$ then the elevator is in free fall.
- * No, because $|\vec{a}| > g$ is not possible.
- * Yes, because $|\vec{a}| > g$ is possible when the cable of the elevator breaks.
- * Yes, because $|\vec{a}| > g$ is possible if the tension in the cable is high enough.

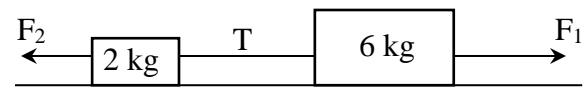
Q4. If a block is lifted vertically upward **with a constant speed** by a force F , then the work done by the gravitational force is:

- * negative and the potential energy increases.
- * negative and the potential energy decreases.
- * zero and the potential energy increases.
- * zero and the potential energy does not change.

Part II: Short Problems (2 points each)

SP1. A block of mass M is pushed across a **rough** horizontal surface by two applied forces (F_1 and F_2) and moves with constant speed to the right as shown. **Draw the free-body diagram for the block.**

SP2. The horizontal surface on which the objects slide is **frictionless**. If $F_1 = 36$ N and $F_2 = 24$ N, **what is the tension (T) (in N) in the string?**


$$F_1 - F_2 = M_{tot}a$$

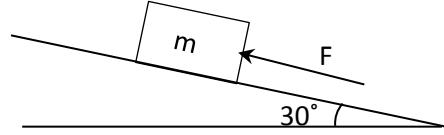
$$a = \frac{12}{8} = 1.5 \text{ m/s}^2$$

$$F_1 - T = 6a$$

$$T = 36 - 6(1.5)$$

$$T = 27 \text{ N}$$

Answer: 27 N


SP3. A block ($m = 6 \text{ kg}$) is pushed up **a rough** 30° incline by a constant force ($F = 56 \text{ N}$) as shown. **If the block moves up with constant speed, calculate the coefficient of kinetic friction (μ_k) between the block and the incline.**

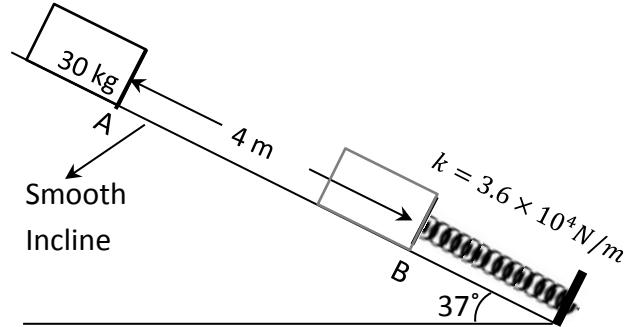
$$F - f_k - mg \sin \theta = 0$$

$$n = mg \cos \theta$$

$$F - \mu_k mg \cos \theta - mg \sin \theta = 0$$

$$\mu_k = \frac{F - mg \sin \theta}{mg \cos \theta} = 0.5$$

Answer: 0.5


SP4. The block shown is released from **rest** from point A (when the spring is relaxed) and stops momentarily at point B. The distance between A and B is 4 m. **Using work kinetic energy theorem, find the maximum compression (in m) of the spring.**

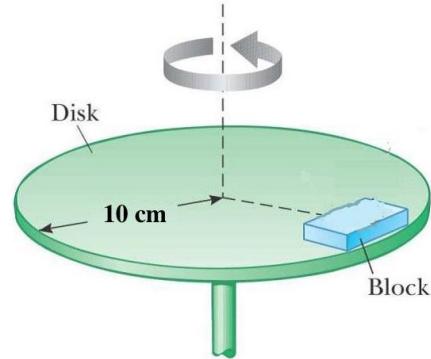
$$E_A = E_B$$

$$mg (4 \sin 37) = \frac{1}{2} kx^2$$

$$x = \sqrt{\frac{8 mg \sin 37}{k}}$$

$$= 0.2 \text{ m}$$

Answer: 0.2 m


SP5. A 20 g block rests on a spinning disk as shown in the figure. If the coefficients of friction between the block and the disk are ($\mu_s = 0.75$, $\mu_k = 0.64$). **What is the maximum speed (in m/s) the disk's rim can have before the block will start sliding?**

$$f_{s_{max}} = \frac{mV^2}{R}$$

$$\mu_s n = \frac{mV^2}{R}$$

$$\mu_s mg = \frac{mV^2}{R}$$

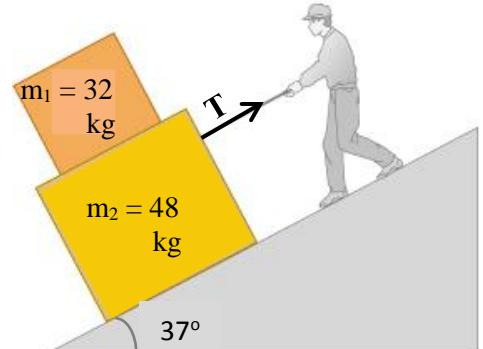
$$V = \sqrt{Rg\mu_s} = 0.87 \text{ m/s}$$

Answer: 0.87 m/s

Part III: Long Problems (3 points each)

LP1. You are lowering two boxes, one on top of the other, down the ramp by pulling on a rope parallel to the surface of the ramp as shown in the figure. **Both boxes move together at a constant speed.** The coefficient of kinetic friction between the ramp and the lower box is ($\mu_k = 0.4$). The coefficient of static friction between the two boxes is ($\mu_s = 0.8$).

a) What the tension (in N) exerted on the lower box?


M_{tot}

$$T + f_k - m_{tot}g \sin \theta = 0$$

$$f_k = \mu_k(m_{tot}g \cos \theta)$$

$$T = m_{tot}g (\sin \theta - \mu_k \cos \theta)$$

$$\cong 226 \text{ N}$$

Answer: 226 N

b) What is the magnitude (in N) and the direction of the friction force on the upper box?

M₁

$$f_s - m_1g \sin \theta = 0$$

$$f_s = m_1g \sin \theta = 192.6 \text{ N}$$

Up the ramp

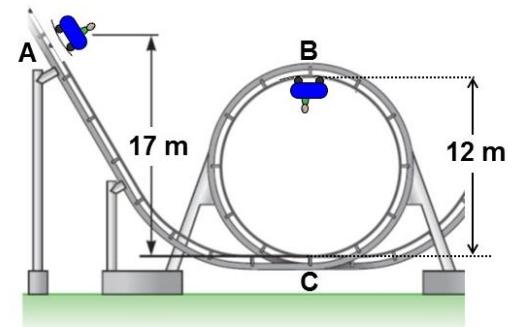
Answer: 192.6, up the ramp

c) What power (in W) do you generate to keep the boxes moving down the ramp with constant speed of 1.2 m/s?

$$P = \vec{F} \cdot \vec{V}$$

$$= -TV \cong -271.2 \text{ W}$$

Answer: -271.2 W


LP2. A 150 kg roller coaster car starts from **rest at point A** and slides down the **frictionless** loop-the-loop shown.

a) **What is the speed (in m/s) of the car at point B?**

$$E_A = E_B$$

$$mg(17) = mg(12) + \frac{1}{2}mv^2$$

$$v = \sqrt{2(170 - 120)} = 10 \text{ m/s}$$

Answer: 10 m/s

b) **What is the normal force (in N) on the car by the track at point B?**

$$n + mg = \frac{mv^2}{R}$$

$$n = \frac{mv^2}{R} - mg = 1000 \text{ N}$$

Answer: 1000 N

c) **What is the tangential acceleration (in m/s²) of the car at point B?**

$$a_T = 0$$

Answer: 0

d) **What is the work (in J) done by the normal force as the car moved from point B to point C?**

$$W_n = 0$$

Answer: 0