

Physics 101

Fall Semester
First Midterm Exam
Saturday, November 27, 2021
9:00 AM - 10:30 AM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar
Dr. Hala Al-Jassar
Dr. Tareq Al Refai
Dr. Abdul Khaleq

Dr. Belal Salameh
Dr. Nasser Demir
Dr. Ruqayyah Askar
Dr. Bedoor Alkurtass

For Instructors use only

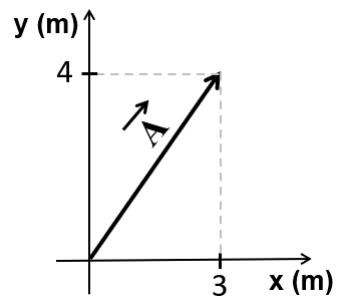
Grades:

#	SP1	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2	2	2	3	3	1	1	1	1	20
Pts											

Important:

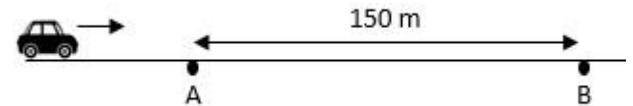
1. Answer all questions and problems (No solution = no points).
2. Full mark = 20 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK


Part I: Short Problems (2 points each)

SP1. Vector \vec{A} is shown in the figure, while the components of vector \vec{B} along the x, y and z axes are $(4m, 2m, 4m)$, respectively. Find the angle between \vec{A} and \vec{B} .

$$\vec{A} \cdot \vec{B} = AB \cos \varphi$$


$$(3i + 4j) \cdot (4i + 2j + 4\hat{k}) = 5(6) \cos \theta$$

$$12 + 8 = 30 \cos \varphi \Rightarrow \varphi = 48.2^\circ$$

SP2. A car is traveling with a constant speed of 5 m/s along a straight road. At point A the car starts accelerating with a constant rate of 2 m/s^2 to reach point B. What is the car's speed (in km/h) at point B?

$$v_B^2 = v_A^2 + 2a\Delta x$$

$$v_B^2 = 25 + 2(2)(150) = 625$$

$$v_B = \sqrt{625} = 25 \text{ m/s}$$


$$\Rightarrow v_B = 25(3.6) = 90 \text{ km/h}$$

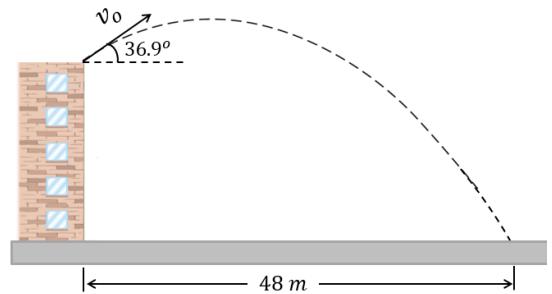
SP3. An airplane is moving horizontally at 40 m/s . The plane is 180 m above sea level. You drop a food basket to your brother on an island. How many seconds does it take the basket to land on the island?

$$\Delta y = v_{0y} t - \frac{1}{2} g t^2$$

$$-180 = 0 - 5t^2$$

$$t^2 = 36 \Rightarrow t = 6 \text{ s}$$

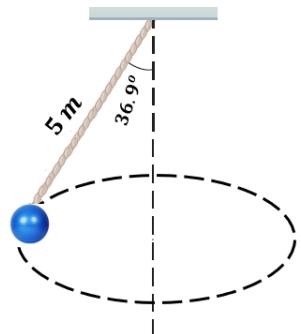
SP4. A stone is thrown 36.9° above the horizontal with a speed of 20 m/s from the roof of a building. The stone lands 48 m from the base of the building as shown. What is the height of the building?


$$\Delta x = v_0 \cos \theta t$$

$$48 = 20 (0.8)t \Rightarrow t = 3\text{s}$$

$$\Delta y = v_0 \sin \theta (t) - \frac{1}{2}gt^2$$

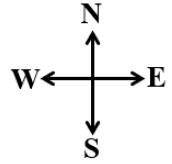
$$\Delta y = 20 (0.6)(3) - 5(3)^2$$


$$= -9 \text{ m} \Rightarrow h = 9 \text{ m}$$

SP5. A ball of mass 2 kg is attached to the end of a rope of length 5m . The rope is attached to the ceiling as shown in the figure. The ball is forced to rotate in a horizontal circle with a constant speed of 2 m/s . Find the magnitude of the acceleration of the ball.

$$R = l \sin(36.9^\circ) = 3 \text{ m}$$

$$a_R = \frac{v^2}{R} = \frac{2^2}{3} = 1.33 \text{ m/s}^2$$



Part II: Long Problems (3 points each)

LP1. You walk for 17 minutes (800 m north, 400 m east then 500 m south).

a) **What is your average speed (in m/s)?**

$$S_{av} = \frac{d}{t} = \frac{1700}{17 \times 60} = 1.67 \text{ m/s}$$

b) **What is the magnitude of your average velocity (in m/s)??**

$$|\vec{v}_{av}| = \left| \frac{400\hat{i} + 300\hat{j}}{17 \times 60} \right| = \frac{500}{17 \times 60} = 0.49 \text{ m/s}$$

c) **What is the direction of your average velocity?**

$$\theta = \tan^{-1} \left(\frac{300}{400} \right) = 36.9^\circ$$

36.9° north of east

LP2. A cat is running in a field, its position vector as a function of time is given by:

$$\vec{r} = (4t - t^2)\hat{i} + 3\hat{j}$$

Where \vec{r} is measured in meters and t is in seconds.

a) What is the cat's initial position vector?

$$\vec{r}(0\ s) = 3\hat{j} \text{ m}$$

b) What is the cat's initial velocity vector?

$$\vec{v} = \frac{d\vec{r}}{dt} = (4 - 2t)\hat{i} \Rightarrow \vec{v}(0\ s) = 4\hat{i} \text{ m/s}$$

c) At what position does the cat momentarily stop?

How far is this position from the initial position?

$$\vec{v} = (4 - 2t)\hat{i} = 0 \Rightarrow t = 2\ s$$

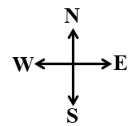
$$\vec{r}(2\ s) = (4\hat{i} + 3\hat{j})\text{m}$$

$$\Delta\vec{r} = \vec{r}(2\ s) - \vec{r}(0\ s)$$

$$\Delta\vec{r} = 4\hat{i} \text{ m}$$

$$d = 4 \text{ m}$$

Part III: Questions (Choose the correct answer, one point each)


Q1. If $\vec{A} = \hat{i} + \hat{j}$, then the unit vector of vector \vec{A} is

- * \hat{k}
- * $\hat{i} + \hat{j}$
- * $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$
- * $\frac{\hat{i} + \hat{j}}{2}$

Q2. A car is moving along a straight line in a direction 30° north of east and slowing down, the direction of its acceleration is

- * 30° north of west
- * 30° east of north
- * 30° south of west
- * 30° south of east

Q3. If a ball is kicked from the ground with initial velocity $\vec{v} = (4\hat{i} + 3\hat{j}) \text{ m/s}$, then its speed at the highest point in its path is

- * zero
- * 3 m/s
- * 4 m/s
- * 5 m/s

Q4. Ali is moving toward the east with a speed of 3 m/s while Bader is moving toward the west with a speed of 2 m/s , then the velocity of Ali with respect to Bader is

- * 1 m/s east
- * 1 m/s west
- * 5 m/s east
- * 5 m/s west