

Physics 101

Fall Semester
 First Midterm Exam
 Saturday, October 12, 2019
 9:00 am - 10:30 am

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Prof. Yacoub Makdisi
 Dr. Ahmed Al-Jassar
 Dr. Hala Al-Jassar
 Dr. Nasser Demir
 Dr. Fatema Al-Dous

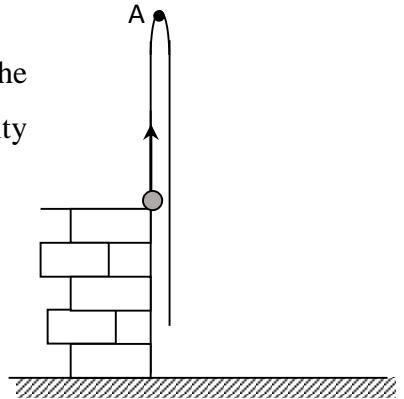
Dr. Abdul Mohsen
 Dr. Tareq Al Refai
 Dr. Belal Salameh
 Dr. Abdel Khaleq

Grades:

#	Q1	Q2	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
Pt	1	1	1	1	2	2	2	2	3	3	20

Important:

1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
 - i) 4 Questions
 - ii) 5 Short Problems
 - iii) 2 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. Cheating incidents will be processed according to the university rules.


GOOD LUCK

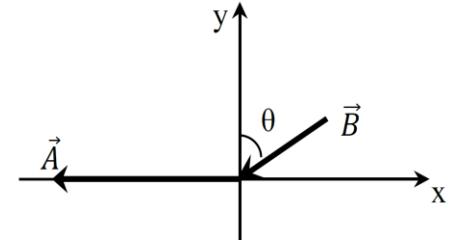
Part I: Questions (one point each)**Q1.** If \vec{A} and \vec{B} are nonzero vectors and $\vec{A} \cdot \vec{B} = 0$, then which of the following is always true.

- * \vec{A} is parallel to \vec{B} .
- * $|\vec{A} \times \vec{B}| = AB$
- * $|\vec{A} \times \vec{B}| = 1$
- * $|\vec{A} \times \vec{B}| = 0$

Q2. A ball is thrown vertically upward from the top of a building as shown. The signs of the ball's displacement (as measured from the initial position), velocity and acceleration, respectively at the highest point in its path (point A) are:

- * $(+, 0, +)$
- * $(+, 0, -)$
- * $(+, 0, 0)$
- * $(+, +, +)$

Q3. A particle starts to move from the origin, its position vector at $t = 2 \text{ s}$ is $\vec{r}_1 = (4\hat{i} + 4\hat{j}) \text{ m}$ and its position vector at $t = 4 \text{ s}$ is $\vec{r}_2 = (8\hat{i} + 6\hat{j}) \text{ m}$


then its average velocity (in m/s) during the time interval from 2 s to 4 s

is:

- * \hat{i}
- * $\hat{i} + \hat{j}$
- * $2\hat{i} + \hat{j}$
- * $3\hat{i} + 2\hat{j}$

Q4. Vector \vec{A} and vector \vec{B} are shown in the figure. $\vec{A} \cdot \vec{B}$ equals:

- * $AB \cos(\theta)$
- * $AB \sin(\theta)$
- * $AB \cos(\pi/2 + \theta)$
- * $AB \sin(\pi/2 + \theta)$

Part II: Short Problems (Two points each)**SP1.** You walk 53 m to the north, then 45 m, 60° east of north as shown in the figure. Determine the magnitude and direction of your displacement vector relative to east (x-axis).

$$\vec{A} = 53\hat{j} \text{ m}$$

$$\vec{B} = 45 \sin 60 \hat{i} + 45 \cos 60 \hat{j} \text{ m}$$

$$= 39\hat{i} + 22.5\hat{j} \text{ m}$$

$$\vec{C} = \vec{A} + \vec{B}$$

$$\vec{C} = 39\hat{i} + 75.5\hat{j}$$

$$C = \sqrt{(39)^2 + (75.5)^2} = \sqrt{7300} = 85 \text{ m}$$

$$\theta = \tan^{-1} \frac{75.5}{39} = 62.7^\circ$$

Answer: $C = 85 \text{ m}$, $\theta = 62.7^\circ$

SP2. Two cars A and B start racing **from rest** at $t = 0$ s with constant accelerations of $a_A = a$ and $a_B = \frac{1}{2}a$, respectively. After 10 seconds the distance between the cars becomes 100 m. **Calculate the acceleration (in m/s^2) of car A (a_A).**

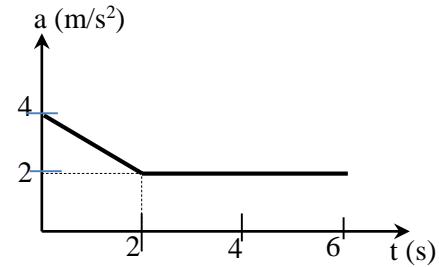
$$\Delta x_A = 0 + \frac{1}{2}at^2$$

$$\Delta x_B = 0 + \frac{1}{4}at^2$$

$$\Delta x_A - \Delta x_B = \frac{1}{4}at^2$$

$$100 = \frac{1}{4}a(10)^2 \quad \therefore a = 4 \text{ m/s}^2$$

Answer: $a = 4 \text{ m/s}^2$

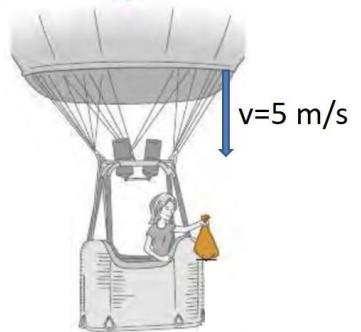

SP3. A particle starts moving at $t = 0$ s in a straight line with initial velocity of 2 m/s. Its acceleration as a function of time is shown in the figure. **Find the particle velocity (in m/s) at $t = 4$ s.**

$\because \Delta v = \text{Area under } a \text{ vs } t \text{ curve}$

$$\therefore \Delta v = 4 + 2 + 4 = 10$$

$$\therefore v - v_o = 10$$

$$\therefore v = 2 + 10 = 12 \text{ m/s}$$


Answer: $v = 12 \text{ m/s}$

SP4. A hot-air balloon is moving downward at constant speed of 5 m/s. A package is released from rest from the balloon when it is 80 m above the ground as shown in the figure. **How long (in s) does the package take to reach the ground?**

$$\Delta y = v_{yi}t - \frac{1}{2}gt^2$$

$$-80 = -5t - 5t^2$$

$$t = 3.5 \text{ s}$$

SP5. The velocity vector of a particle is given by

Answer: $t = 3.5 \text{ s}$

$$\vec{v} = (4 - 2t) \hat{i} + 4\hat{j} \quad \vec{v} \text{ is in m/s and } t \text{ is in s.}$$

Find the time (in s) at which the velocity \vec{v} and acceleration \vec{a} are perpendicular.

$$\vec{a} = -2 \hat{i}$$

$$\therefore \vec{v} \cdot \vec{a} = 0$$

$$\therefore [(4 - 2t) \hat{i} + 4\hat{j}] \cdot (-2 \hat{i}) \Rightarrow -8 + 4t = 0$$

$$\therefore t = 2 \text{ s}$$

Answer: $t = 2 \text{ s}$

Part III: Long Problems (Three points each)

LP1. An object moves along a straight line (x-axis). The equation of the object's position as a function of time is:

$$x(t) = 40 + 6 t - 0.2 t^2$$

where x in meter and t in second

a) Find the average velocity (in m/s) of the object during the first 20 s.

$$x(0) = 40 \text{ m} \quad x(20) = 40 + 120 - 80 = 80 \text{ m}$$

$$V_{av} = \frac{x(20) - x(0)}{20} = \frac{80 - 40}{20} = 2 \text{ m/s}$$

Answer: 2 m/s

b) Find the time (in s) at which the object reverse its direction of motion.

$$V = \frac{dx}{dt} = 6 - 0.4 t = 0 \Rightarrow t = 15 \text{ s}$$

c) Find the position (in m) of the object when its velocity is 4 m/s.

$$v = 6 - 0.4 t$$

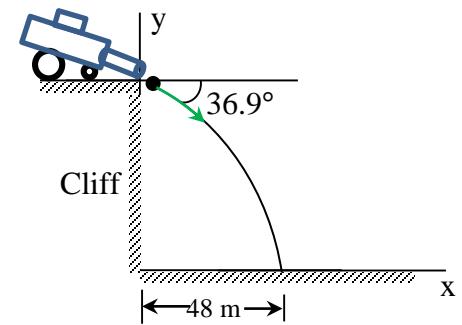
$$4 = 6 - 0.4 t$$

$$0.4 t = 2$$

$$t = 5 \text{ s}$$

$$\begin{aligned} x(5) &= 40 + 30 - 5 \\ &= 65 \text{ m} \end{aligned}$$

Answer: 65 m


LP2. A cannon on the top of a cliff, fires a ball 36.9° below the horizontal direction as shown. The ball hits the ground after 2 s at a horizontal distance 48 m from the cliff.

a) With what initial speed (in m/s) does the cannon fire the ball?

$$v_{ox} = \frac{\Delta x}{\Delta t} = \frac{48}{2} = 24 \text{ m/s}$$

$$\therefore v_{ox} = v_o \cos 36.9$$

$$\therefore v_o = \frac{v_{ox}}{\cos 36.9} = \frac{24}{.8} = 30 \text{ m/s}$$

Answer: 30 m/s

b) With what velocity (in m/s) does the ball hit the ground in unit vector notation?

$$v_y = v_{oy} - gt$$

$$= -30 \sin 36.9 - 20$$

$$= -18 - 20 = -38 \text{ m/s}$$

$$\vec{v} = (24 \hat{i} - 38 \hat{j}) \text{ m/s}$$

Answer: $(24 \hat{i} - 38 \hat{j}) \text{ m/s}$

c) What is the height (in m) of the cliff?

$$\begin{aligned} \Delta y &= v_{oy}t - \frac{1}{2} g t^2 \\ &= (-18)(2) - 5 (2)^2 \\ &= -36 - 20 = -56 \text{ m} \\ \therefore h &= 56 \text{ m} \end{aligned}$$

Answer: 56 m