

Physics 101

First Semester 2018 - 2019

1st Midterm Exam

Saturday, October 6, 2018

11:00 - 12:30

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

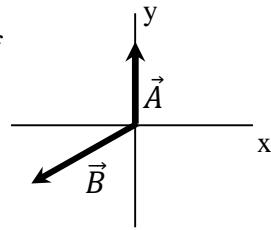
Prof. Yacoub Makdisi
Dr. Abdul Mohsen
Dr. Abdul Khaleq
Dr. Ahmed Al-Jassar

Dr. Belal Salameh
Dr. Hala Al-Jassar
Dr. Nasser Demir
Dr. Tareq Al Refai

Model Answer
For Instructors use only

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Total
1	1	1	1		2	2	2	2	2	3	3	20
pts												

Important:


1. Answer all questions and problems.
2. Full mark = 20 points as arranged in the above table.
3. No solution = no points.
4. **Give your final answer in the correct unit.**
5. Check the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Cheating incidents will be processed according to the university rules.**
10. Mobiles are **strictly prohibited** during the exam.

GOOD LUCK

Part I: Choose the correct Answer (circle the * of the correct answer) (1 point each)

Q1. The figure shows two vectors \vec{A} and \vec{B} . If vector $\vec{C} = \vec{A} - \vec{B}$, then the signs of the components c_x and c_y are respectively

* (+, +) * (-, +) * (+, -) * (-, -)

Q2. A, B, C, and D are 4 particles moving along the x-axis. The table shows the initial and final position for each particle.


The particle which has the most negative displacement is

* A * B * C * D

	A	B	C	D
x_i	-4	4	-4	-8
x_f	8	-8	-8	8

Q3. \vec{A} and \vec{B} vectors, of equal magnitudes, are shown in the figure. If $\vec{C} = \vec{A} - \vec{B}$, then \vec{C} equals

* zero * $-2\vec{A}$ * $2\vec{A}$ * $2\vec{B}$

Q4. A cat runs from rest in a straight line with a constant acceleration. If the distance covered by the cat from ($t = 0$ to $t = 1\text{s}$) is d , then the distance covered (from $t = 1\text{s}$ to $t = 2\text{s}$) is

* d * $2d$ * $3d$ * $4d$

Part II: Short Problems (2 points each)

SP1. Given the three vectors: $\vec{A} = -\hat{i} - 4\hat{j} + 2\hat{k}$, $\vec{B} = 3\hat{i} + 2\hat{j}$ and $\vec{C} = \hat{k}$

Calculate $\vec{A} \cdot (\vec{B} \times \vec{C})$

$$\vec{B} \times \vec{C} = (3\hat{i} + 2\hat{j}) \times \hat{k}$$

$$= 2\hat{i} - 3\hat{j}$$

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = (-\hat{i} - 4\hat{j} + 2\hat{k}) \cdot (2\hat{i} - 3\hat{j})$$

$$= -2 + 12 = 10$$

Answer: $\vec{A} \cdot (\vec{B} \times \vec{C}) = 10$

SP2. A stone is thrown vertically upward from the ground. After 4 s, the stone strikes the ground. With what speed was the stone thrown?

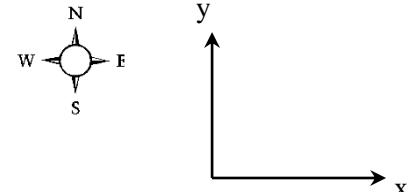
$$\Delta y = V_o t - \frac{1}{2} g t^2$$

$$0 = 4V_o - 5(4)^2$$

$$V_o = 20 \text{ m/s}$$

Answer: $V_o = 20 \text{ m/s}$

SP3. A dog runs in a park, its position vector (in m) as a function of time is


$$\vec{r} = (6 + 3t)\hat{i} + t^2\hat{j}, \text{ where } t \text{ is measured in seconds}$$

with what initial speed and in which direction does the dog run?

$$\vec{V} = \frac{d\vec{r}}{dt} = 3\hat{i} + 2t\hat{j}$$

$$\vec{V}_o = 3\hat{i} \text{ m/s}$$

$$V_o = 3 \text{ m/s} \quad \text{toward east}$$

Answer: $V_o = 3 \text{ m/s}$ toward east

SP4. The dog (in SP3) runs with constant acceleration. What is the magnitude and the direction of the acceleration?

[1] $\vec{a} = \frac{d\vec{v}}{dt} = 2\hat{j} \text{ m/s}^2$

$$a = 2 \text{ m/s}^2 \quad \text{toward north}$$

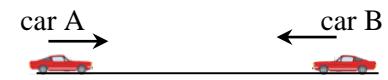
Answer: 2 m/s^2 toward north

SP5. Car A is moving along a straight road with a constant speed of 20 m/s toward car B. When the distance between the two cars becomes 800 m, car B starts to move from rest toward car A with a constant acceleration of 2 m/s^2 . How long will take the two cars to pass each other?

$$800 = \Delta x_A + \Delta x_B$$

$$V_A = 20 \text{ m/s}$$

$$= V_A t + \frac{1}{2} a_B t^2$$


$$a_B = 2 \text{ m/s}^2$$

$$800 = 20t + t^2$$

$$V_{OB} = 0$$

$$t^2 + 20t - 800 = 0$$

$$t = \frac{-20 \pm \sqrt{400 - 4(-800)}}{2} = 20 \text{ s}$$

Answer: $t = 20 \text{ s}$

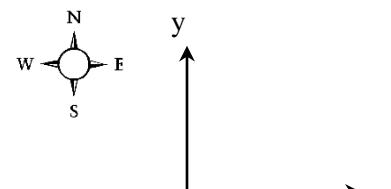
Part III: Long Problems (3 points each)

LP1. You walk from your house to Kuwait University taking the following path:

(500 m east), then (400 m, 36.9° north of east), then (300 m north)

a. **What is the length and the direction of the vector displacement that points from your house directly to the university?**

$$\vec{A} = 500 \hat{i} \quad \vec{B} = [(400 \cos 36.9^\circ)\hat{i} + (400 \sin 36.9^\circ)\hat{j}] \text{ m} \\ = (320 \hat{i} + 240 \hat{j}) \text{ m}$$


$$\vec{C} = 300 \hat{j} \text{ m}$$

$$\vec{R} = \vec{A} + \vec{B} + \vec{C}$$

$$\vec{R} = (820 \hat{i} + 540 \hat{j}) \text{ m}$$

$$R = \sqrt{(820)^2 + (540)^2} = 981.8 \text{ m}$$

$$\theta = \tan^{-1} \left(\frac{540}{820} \right) = 33.4^\circ \text{ north of east}$$

Answer: $R = 981.8 \text{ m}$
 $\theta = 33.4^\circ$ north of east

b. If you are taking 12 min to reach the university, what is the magnitude of your average velocity and average speed?

$$V_{av} = \frac{R}{\Delta t} = \frac{982}{12 \times 60} = 1.36 \text{ m/s}$$

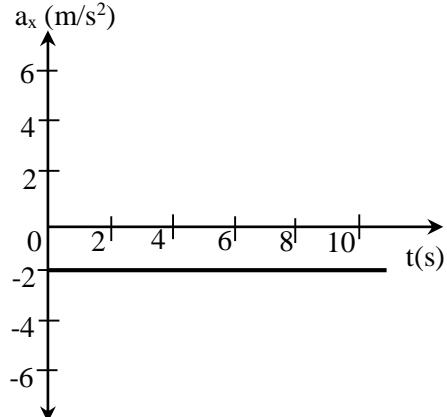
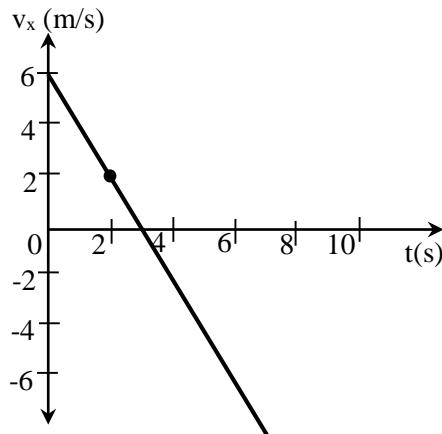
$$S_{av} = \frac{d}{\Delta t} = \frac{1200}{12 \times 60} = 1.67 \text{ m/s}$$

Answer: $V_{av} = 1.36 \text{ m/s}$

Answer: $S_{av} = 1.67 \text{ m/s}$

LP2. A particle moves along the x-axis, its velocity as a function of time is given by

$$V_x = b - ct \quad \text{where } b = 6 \text{ m/s} \quad \text{and} \quad c = 2 \text{ m/s}^2$$



a) Calculate the acceleration of the particle.

$$V_x = 6 - 2t$$

$$a_x = \frac{dV_x}{dt} = -2 \text{ m/s}^2$$

Answer: $a_x = -2 \text{ m/s}^2$

b) Plot ($v_x - t$) and ($a_x - t$) in the given diagram.

c) What is the distance covered by the particle during the first 6 sec?

$$d = |\Delta X_+| + |\Delta X_-| = 9 + 9 = 18 \text{ m}$$

Answer: $d = 18 \text{ m}$

d) What is the position of the particle at $t = 10 \text{ s}$ if its initial position is 4 m?

$$\because a = -2 \text{ m/s}^2$$

$$V_{ox} = 6 \text{ m/s}$$

$$t = 10$$

$$x - x_o = V_o t + \frac{1}{2} a_x t^2$$

$$x - 4 = 6(10) + \frac{1}{2}(-2)(10)^2 = -40 \text{ m}$$

$$x = -40 + 4 = -36 \text{ m}$$

Answer: $x = -36 \text{ m}$