

Physics 101

Fall Semester

Final Exam

Monday, January 24, 2022

6:00 PM – 8:00 PM

Student's Name: Serial Number:

Student's Number: Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar

Dr. Hala Al-Jassar

Dr. Tareq Al Refai

Dr. Abdul Khaleq

Dr. Belal Salameh

Dr. Nasser Demir

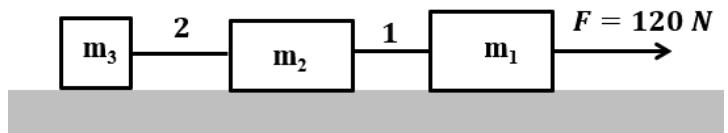
Dr. Ruqayyah Askar

Dr. Bedoor Alkurtass

For Instructor's Use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	SP6	SP7	LP1	LP2	LP3	Q1	Q2	Q3	Q4	Total
	3	3	3	3	3	3	3	5	5	5	1	1	1	1	40
Pts															


Important:

1. Answer all questions and problems (No solution = no points).
2. Full mark = 40 points as arranged in the above table.
3. **Give your final answer in the correct units.**
4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
6. Programmable calculators, which can store equations, are not allowed.
7. **Cheating incidents will be processed according to the university rules.**

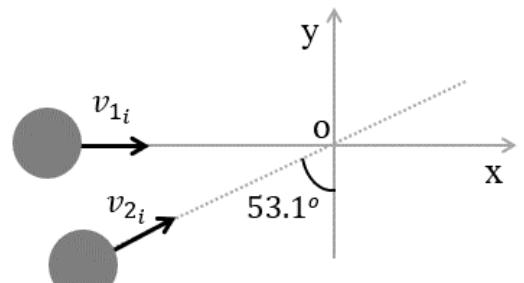
GOOD LUCK

Part I: Short Problems (3 points each)

SP1: Three blocks ($m_1 = 20 \text{ kg}$, $m_2 = 15 \text{ kg}$, $m_3 = 5 \text{ kg}$) are connected by two light ropes, as shown. A constant horizontal force acts on block 1 and the three blocks move to the right on a **frictionless** horizontal surface. **Find the tension in rope 2.**

$$\sum F = m_{total}a \Rightarrow a = \frac{\sum F}{m_{total}} = \frac{120}{40} = 3 \text{ m/s}^2$$

$$T_2 = m_3 a = 15 \text{ N}$$


SP2. Two balls of **equal mass** moving with the same initial speed ($v_{1i} = v_{2i} = 3 \text{ m/s}$), as shown. The two balls collide at point O and **stick together**, **what is their common velocity in unit vector notation after the collision?**

$$\vec{v}_{1i} = +3 \hat{i} \text{ m/s}$$

$$\begin{aligned} \vec{v}_{2i} &= (+3 \sin 53.1^\circ \hat{i} + 3 \cos 53.1^\circ \hat{j}) \text{ m/s} \\ &= (+2.4 \hat{i} + 1.8 \hat{j}) \text{ m/s} \end{aligned}$$

$$m\vec{v}_{1i} + m\vec{v}_{2i} = 2m\vec{v}_f$$

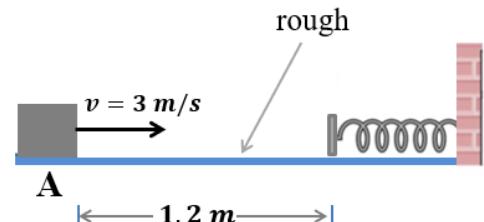
$$\vec{v}_f = \frac{\vec{v}_{1i} + \vec{v}_{2i}}{2} = (2.7 \hat{i} + 0.9 \hat{j}) \text{ m/s}$$

SP3. A 0.3 kg ball is released **from rest**. If the magnitude of the ball's momentum just before it hits the ground is $2.4 \text{ kg} \cdot \text{m/s}$, **from what height was the ball released?** (Ignore air resistance)

$$p_f = mv_f \Rightarrow v_f = \frac{p_f}{m} = \frac{2.4}{0.3} = 8 \text{ m/s}$$

$$v_f^2 = v_i^2 - 2g\Delta y \Rightarrow v_f^2 = 2gh \Rightarrow h = \frac{v_f^2}{2g} = 3.2 \text{ m}$$

SP4. A particle moves in the xy-plane under the influence of a net **conservative** force. The potential energy associated with this force is given by $U(x, y) = 3(x^4 + y^4)$, where x and y are measured in m and U is measured in J. **Find the work done by the net force on the particle when moving from (2 m, 3 m) to (4 m, 5 m).**

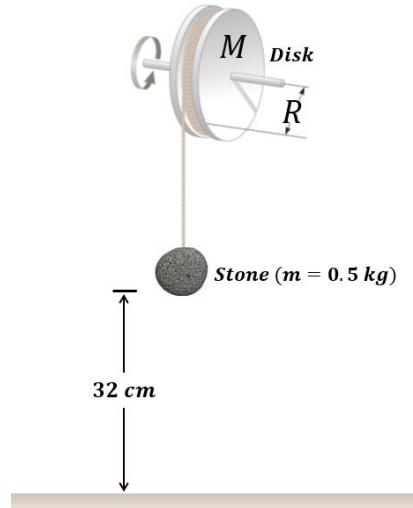

$$\begin{aligned} W_F &= -\Delta U \\ &= U_i - U_f = 3(2^4 + 3^4) - 3(4^4 + 5^4) \\ &= 291 - 2643 = -2352 J \end{aligned}$$

SP5. A 7 kg block starts moving at point A with a speed of 3 m/s on a **rough horizontal surface** ($\mu_k = 0.25$), as shown. The block moves to the right and compresses a spring **a maximum distance of 0.2 m, find the force constant of the spring.**

$$E_f - E_i = W_{f_k}$$

$$\frac{1}{2}kx_{max}^2 - \frac{1}{2}mv^2 = -\mu_k(mg(1.4))$$

$$\frac{1}{2}k(0.2^2) - 31.5 = -24.5 \Rightarrow k = 350 \text{ N/m}$$

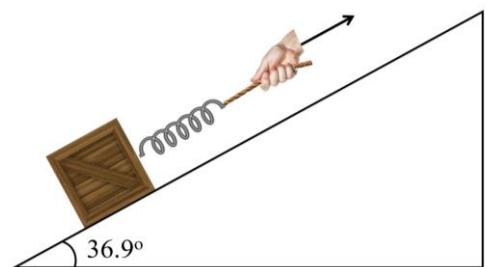


SP6. A light rope is wrapped around the rim of a solid disk that is free to rotate about a horizontal axis through its center. We tie the free end of the rope to a stone and **release the stone from rest at a height 32 cm from the floor**, as shown. **Find the speed of the stone just before it touches the floor if the rotational kinetic energy of the disk at this instant is 0.6 J.**

$$mgh = \frac{1}{2}mv_f^2 + K_{rot}$$

$$v_f = \sqrt{\frac{2}{m}(mgh - K_{rot})}$$

$$= \sqrt{\frac{2}{0.5}((0.5)(10)(0.32) - 0.6)} = 2 \text{ m/s}$$


SP7. A 20 kg block rests on a **rough incline** ($\mu_s = 0.4$). A spring of force constant $k = 1150 \text{ N/m}$ is connected to the block, as shown. The spring is pulled with a gradually increasing force. **Find the extension in the spring when the block starts moving up the incline.**

$$kx = mg \sin(36.9^\circ) + f_{smax}$$

$$kx = mg \sin(36.9^\circ) + \mu_s mg \cos(36.9^\circ)$$

$$x = \frac{mg \sin(36.9^\circ) + \mu_s mg \cos(36.9^\circ)}{k} = \frac{184}{1150}$$

$$= 0.16 \text{ m} = 16 \text{ cm}$$

Part II: Long Problems (5 points each)

LP1. Only two forces \vec{F}_1 and \vec{F}_2 act on a block of mass $m = 0.5 \text{ kg}$ that is moving in the xy-plane. The velocity of the block is given by $\vec{v}(t) = [40\hat{i} + (20 - 10t)\hat{j}] \text{ m/s}$, where t is measured in seconds.

a) Find the net force on the block in unit vector notation.

$$\vec{a} = \frac{d\vec{v}}{dt} = -10\hat{j} \text{ m/s}^2$$

$$\sum \vec{F} = \vec{F} = m\vec{a} = 0.5(-10\hat{j}) = -5\hat{j} \text{ N}$$

b) If $\vec{F}_1 = 15\hat{i} \text{ N}$, find the magnitude of \vec{F}_2 .

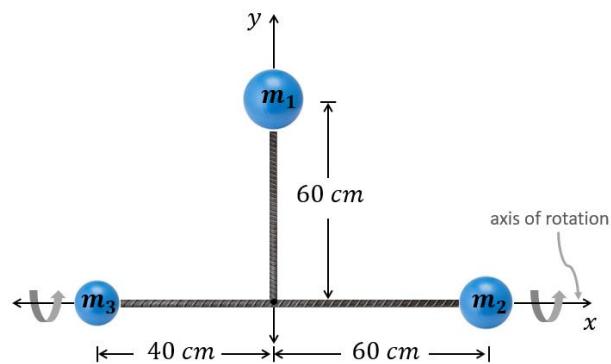
$$\vec{F}_2 = \sum \vec{F} - \vec{F}_1 = (-5\hat{j} - 15\hat{i}) \text{ N}$$

$$\vec{F}_2 = (-15\hat{i} - 5\hat{j}) \text{ N}$$

$$|\vec{F}_2| = \sqrt{15^2 + 5^2} = 15.8 \text{ N}$$

c) Find the total work done on the block during the time interval from $t = 0 \text{ s}$ to $t = 2 \text{ s}$.

$$\Sigma W = \Delta k = \frac{1}{2}m(v^2(2 \text{ s}) - v^2(0 \text{ s}))$$


$$\vec{v}(2 \text{ s}) = 40\hat{i} + (20 - 20)\hat{j} = 40\hat{i} \text{ m/s} \Rightarrow v^2(2 \text{ s}) = 1600 \left(\frac{m}{s}\right)^2$$

$$\vec{v}(0 \text{ s}) = (40\hat{i} + 20\hat{j}) \frac{m}{s} \Rightarrow v^2(0 \text{ s}) = 2000 \left(\frac{m}{s}\right)^2$$

$$\Sigma W = \frac{1}{2}(0.5)(1600 - 2000) = -100 \text{ J}$$

LP2. Three small balls ($m_1 = 0.5 \text{ kg}$, $m_2 = 0.3 \text{ kg}$, and $m_3 = 0.2 \text{ kg}$) are connected by massless rigid rods, as shown. The system starts to rotate **from rest** about the x-axis with **a constant angular acceleration of 2 rad/s^2** .

a) **Find the moment of inertia of the system about the axis of rotation.**

$$I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 = (0.5)(0.6)^2 + (0.3)(0)^2 + (0.2)(0)^2 = 0.18 \text{ kg} \cdot \text{m}^2$$

b) **Find the angular speed of the system at $t = 4 \text{ s}$.**

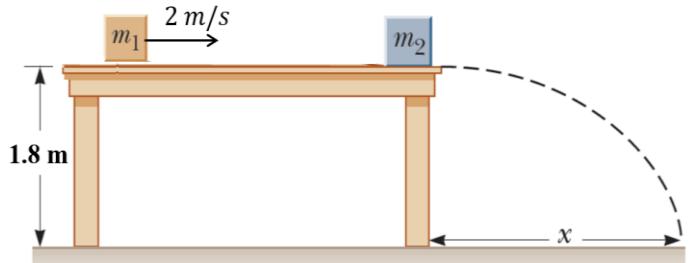
$$\begin{aligned} \omega_f &= \omega_i + \alpha t \\ &= 0 + 2(4) = 8 \text{ rad/s} \end{aligned}$$

c) **Find the rotational kinetic energy of the system at $t = 4 \text{ s}$.**

$$K_{\text{rot}} = \frac{1}{2} I \omega^2 = \frac{1}{2} (0.18)(8)^2 = 5.76 \text{ J}$$

d) **Find the net torque exerted on the system about the axis of rotation.**

$$\sum \tau = I\alpha = 0.18 (2) = 0.36 \text{ N} \cdot \text{m}$$


LP3. Block 1 moves with a speed of 2 m/s on a **frictionless** tabletop, as shown. It collides **elastically** with block 2 ($m_2 = 0.7 \text{ kg}$) that is initially at rest. After the collision block 2 moves horizontally **to the right at a speed of 0.8 m/s** and leaves the table and then land on the ground.

a) Find the velocity of block 1 immediately after the collision.

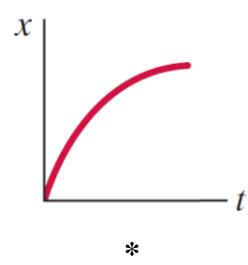
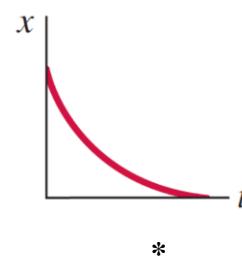
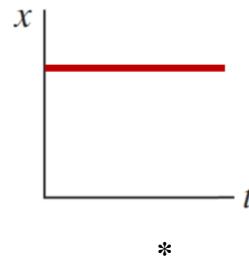
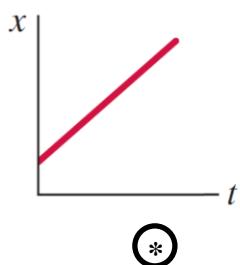
$$v_{2_{xf}} - v_{1_{xf}} = v_{1_{xi}} - v_{2_{xi}}$$

$$0.8 - v_{1_{xf}} = 2 - 0$$

$$v_{1_{xf}} = -1.2 \text{ m/s}$$

b) Find the impulse on block 2?

$$\vec{J} = \Delta \vec{p} = m_2 \vec{v}_{2_f} - m_2 \vec{v}_{2_i} = 0.7(0.8\hat{i}) - 0 = +0.56 \hat{i} \text{ kg} \cdot \frac{\text{m}}{\text{s}}$$

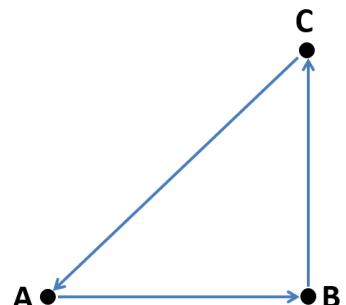




c) How far away (x) from the bottom of the table does block 2 land?

$$\Delta y = v_{y_i} t - \frac{1}{2} g t^2 \Rightarrow t = \sqrt{\frac{-2\Delta y}{g}} = \sqrt{\frac{3.6}{10}} = 0.6 \text{ s}$$

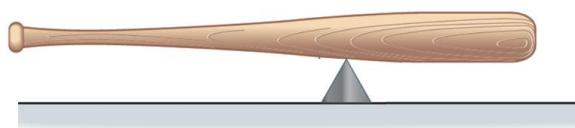
$$\Delta x = v_{x_i} t = 0.8(0.6) = 0.48 \text{ m}$$

Part III: Questions (Choose the correct answer, one point each)

Q1. A car travels along the x-axis **with constant speed**. Which of the following graphs represents the motion of the car?


Q2. Two horizontal forces of equal magnitude (F) act on two blocks, as shown. **The blocks remain at rest on a frictionless horizontal surface.** The magnitude of the **contact force** between the two blocks is F_{12} . Which of the following is true?

- * $F_{12} = 0$
- * $F_{12} = 2F$
- * $F_{12} = F/2$
- $F_{12} = F$


Q3. Consider the path ABCA shown in the figure. If the work done by a **conservative force** \vec{F} from A to B is 6 J, and the work done by \vec{F} from B to C is 8 J, then the work done by \vec{F} from C to A is:

- * 0 J
- * -10 J
- 14 J
- * 10 J

Q4. A baseball bat balances when placed on a stand, as shown. The relation between the mass of the bat to the left of the stand (m_{left}) and its mass to the right of the stand (m_{right}) is:

- * $m_{left} > m_{right}$
- * $m_{left} = m_{right}$
- $m_{left} < m_{right}$

