

Physics 101

Fall Semester

Final Exam

Saturday, December 22, 2018

02:00 pm - 04:00 pm

Student's Name: Serial Number:

Student's Number:

Section:

Choose your Instructor's Name:

Prof. Yacoub Makdisi
Dr. Ahmed Al-Jassar
Dr. Hala Al-Jassar
Dr. Nasser Demir

Dr. Abdul Mohsen
Dr. Tareq Al Refai
Dr. Belal Salameh
Dr. Abdel Khaleq

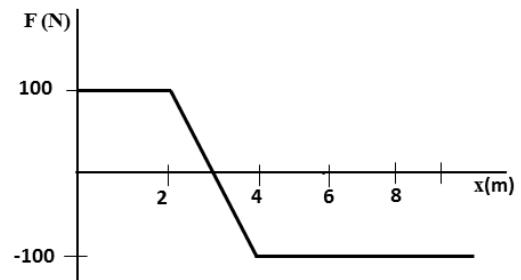
Grades:

For Instructors use only

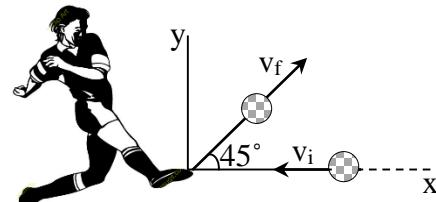
#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	SP6	SP7	LP1	LP2	LP3	Total
Pts	1	1	1	1	3	3	3	3	3	3	3	5	5	5	40

Important:

1. Answer all questions and problems.
2. Full mark = 40 points are arranged in the above table.
 - i) 4 Questions
 - ii) 7 Short Problems
 - iii) 3 Long Problems.
3. No solution = no points.
4. **Use SI units.**
5. Give correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are **strictly prohibited** during the exam.
8. Programmable calculators, which can store equations, are not allowed.
9. **Please write down your final answer in the box shown in each problem.**
10. Cheating incidents will be processed according to the university rules.


GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)**Q1.** Under which of the following conditions is $|\vec{A} - \vec{B}| = |\vec{A} + \vec{B}|$?


- * always
- if \vec{A} is perpendicular to \vec{B}
- * if \vec{A} is parallel to \vec{B}
- * if \vec{A} is anti parallel to \vec{B}

Q2. The graph shows the **net force** exerted on a particle moving along the x direction as a function of its position. If the particle's **speed** at $x = 0$ is (v_i) , **at what other position does it have the same initial speed?**

- * $x = 2$
- * $x = 4$
- $x = 6$
- * $x = 8$

Q3: Ali ($M_A = 20$ Kg) and Bader ($M_B = 15$ Kg) slide from rest on two **frictionless slides** as shown in the figure. **Both slides have the same height, h .** At the slides end, their speeds are v_A and v_B , respectively. Which of the following statements is correct?

- * $v_A > v_B$
- * $v_A < v_B$
- $v_A = v_B$
- * No simple relation between v_A and v_B because we don't know the curvature of slide 2

Q4. A soccer ball initially is moving to the left with a speed $v_i \neq 0$, but then it is kicked. After the kick it is moving at 45° upward with a speed v_f , as shown in the figure. **The angle (α) between the average net force on the ball and the x-axis is:**

- * $\alpha = 0^\circ$

- $0^\circ < \alpha < 45^\circ$

- * $\alpha = 45^\circ$

- * $\alpha = 90^\circ$

Part II: Short Problems (3 points each)**SP1.** The angular velocity of a wheel rotating about z-axis is -4 rad/s at $t = 0$ and increases **linearly** with time to 6 rad/s at $t=5$ s. **Find the angular displacement ($\Delta\theta$) during this time period.**

$$\alpha = \frac{\Delta\omega}{\Delta t} = \frac{6 - -4}{5} = 2 \text{ rad/s}^2$$

$$\Delta\theta = \omega_i t + \frac{1}{2}\alpha t^2 = -4(5) + \frac{1}{2}(2)(5)^2 = 5 \text{ rad}$$

$$\text{OR} \quad \Delta\theta = \left(\frac{\omega_i + \omega_f}{2} \right) \Delta t \\ = \left(\frac{-4 + 6}{2} \right) 5 = 5 \text{ rad}$$

Answer: $\Delta\theta = 5 \text{ rad}$

SP2. A particle moves under the influence of **a single conservative force** with a potential energy of $U = 2x^2 - 5x$, where U is in J and x is in m. **Find the position of the particle when it is at equilibrium.**

$$F = -\frac{dU}{dx} = -4x + 5$$

$$F = 0 \Rightarrow -4x + 5 = 0$$

$$x = 1.25 \text{ m}$$

Answer: $x = 1.25 \text{ m}$

SP3. A 4 kg object has an initial velocity of $6\hat{i} \text{ m/s}$. **Find the total work done on the object** if its velocity changes to $4\hat{j} \text{ m/s}$.

$$W = \Delta K = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

$$v_i^2 = 36 \left(\frac{m}{s}\right)^2$$

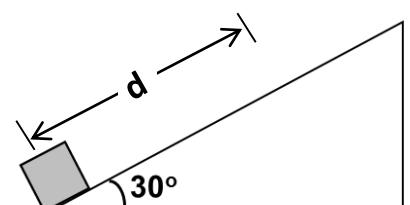
$$v_f^2 = 16 \left(\frac{m}{s}\right)^2$$

$$W = \frac{1}{2}4[16 - 36] = -40 \text{ J}$$

Answer: $W = -40 \text{ J}$

SP4. A block at the bottom of **a frictionless** incline is given an **initial velocity of 4 m/s up the incline** as shown in the figure. **How far up the incline (d) does the block reach before coming to rest momentarily?**

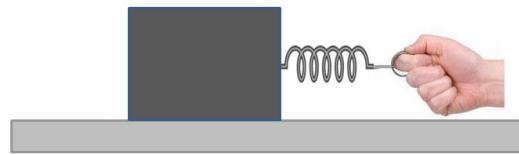
$$F = -mg \sin\theta = ma$$


$$E_i = E_f$$

$$a = -g \sin\theta = -5 \text{ m/s}^2$$

$$\text{OR} \quad \frac{1}{2}mv_i^2 = mgh = mg(d \sin\theta)$$

$$v_f^2 = v_i^2 + 2a(d)$$

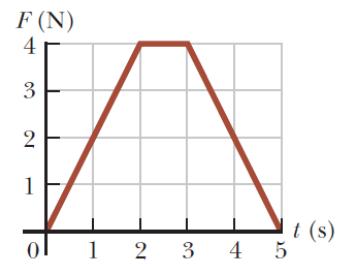

$$d = \frac{v_i^2}{2g \sin\theta} = 1.6 \text{ m}$$

Answer: $d = 1.6 \text{ m}$

SP5. A 15 kg block rests on a rough horizontal surface ($\mu_s = 0.6, \mu_k = 0.4$). The block is connected to a spring ($k = 300 \text{ N/m}$). A gradually increasing force is applied to the spring. **At the moment just before the block starts to move, find the potential energy stored in spring.**

$$kx = \mu_s mg \Rightarrow x = \frac{\mu_s mg}{k} = \frac{(0.6)(15)(10)}{300} = 0.3 \text{ m}$$

$$U_{\text{el}} = \frac{1}{2} kx^2 = \frac{1}{2} (300)(0.3^2) = 13.5 \text{ J}$$



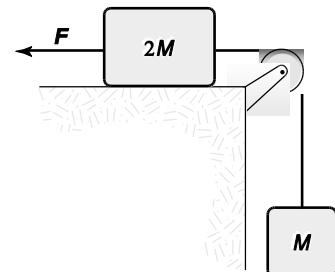
Answer: $U_{\text{el}} = 13.5 \text{ J}$

SP6. The magnitude of **the net force** exerted along the x direction on a 0.5 kg box varies with time as shown in the figure. **Find the speed of the box at $t = 5 \text{ s}$ if it starts moving to the right at a speed of 2 m/s at $t = 0 \text{ s}$.**

$$\Delta p = m(v_f - v_i) = \text{Area} = \frac{1}{2}(2)(4) + (1)(4) + \frac{1}{2}(2)(4) = 12 \text{ kg m/s}$$

$$v_f = \frac{\Delta p}{m} + v_i = \frac{12}{0.5} + 2 = 26 \text{ m/s}$$

Answer: $v_f = 26 \text{ m/s}$


SP7. In the figure shown, assume that all surfaces are **frictionless and the pulley is massless**. If $F = 50 \text{ N}$ and $M = 2 \text{ kg}$, **what is the tension in the string connecting M and 2M?**

$$F - Mg = 3Ma$$

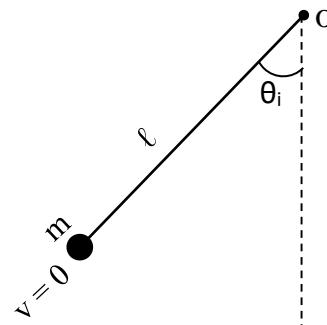
$$a = \frac{F - Mg}{3M} = \frac{50 - 20}{6} = 5 \text{ m/s}^2$$

$$T - Mg = Ma$$

$$T = M(g + a) = 30 \text{ N}$$

Answer $T = 30 \text{ N}$

Part III: Long Problems (5 points each)


LP1. A simple pendulum made of a **massless string** of length (l) and a **small ball** of mass (m), starts from **rest** at ($\theta = \theta_i$).

a) **Find the speed of the ball** (in terms of m , l and θ_i) **when the pendulum is at the vertical position** ($\theta = 0^\circ$).

$$E_i = E_f$$

$$mgl(1 - \cos\theta) = \frac{1}{2}mv^2$$

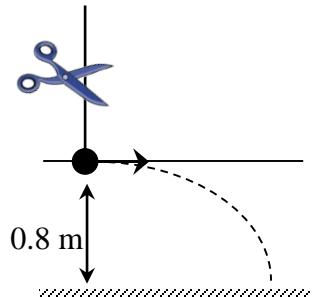
$$v = \sqrt{2gl(1 - \cos\theta_i)}$$

Answer: $v = \sqrt{2gl(1 - \cos\theta_i)}$

b) **Find the rotational kinetic energy** (in terms of m , l and θ_i) **at the vertical position**.

Hint: treat the ball as a point mass.

$$K = \frac{1}{2}I\omega^2$$

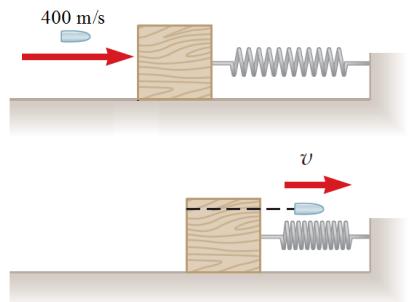

$$K = \frac{1}{2}(ml^2)\left(\frac{v}{l}\right)^2 = \frac{1}{2}mv^2 = mgl(1 - \cos\theta_i)$$

Answer: $K = mgl(1 - \cos\theta_i)$

c) **If the string is cut at the vertical position when the ball is at 0.8 m above the ground, find the y-component of the velocity when it hits the ground.**

$$v_{yf}^2 = v_{yi}^2 - 2g(\Delta y)$$

$$v_{yf} = \sqrt{-2g(\Delta y)} = \sqrt{-2(10)(-0.8)} = -4 \text{ m/s}$$


Answer: $v_{yf} = -4 \text{ m/s}$

LP2. A bullet of mass $m = 5 \text{ g}$ moving with a speed of $v_i = 400 \text{ m/s}$ is fired into and passes through a block of mass $M = 1 \text{ kg}$, as shown in the figure. The block which is **initially at rest** on a **frictionless** surface is connected to a spring with force constant $k = 900 \text{ N/m}$. The block moved a distance $d = 5 \text{ cm}$ to the right after the impact before being brought momentarily to rest by the spring. **Assume that the collision time is very small.**

a) Find the maximum speed of the block (just after the bullet emerges from it).

$$\frac{1}{2}MV_i^2 = \frac{1}{2}kx^2$$

$$V_i = \sqrt{\frac{k(x)^2}{M}} = \sqrt{\frac{900(0.05)^2}{1}} = 1.5 \text{ m/s}$$

Answer: $V_i = 1.5 \text{ m/s}$

b) Find the compression of the spring (x) when the speed of the block is (0.5 m/s).

$$\frac{1}{2}MV_i^2 = \frac{1}{2}MV^2 + \frac{1}{2}kx^2$$

$$\frac{1}{2}(1)(1.5)^2 = \frac{1}{2}(1)(0.5)^2 + \frac{1}{2}(900)x^2$$

$$x = 0.047 \text{ m}$$

Answer: $x = 0.047 \text{ m}$

c) Find the bullet speed after emerging from the block.

$$mv_i + 0 = MV + mv_f$$

$$v_f = \frac{mv_i - MV}{m} = \frac{0.005(400) - 1(1.5)}{0.005} = 100 \text{ m/s}$$

Answer: $v_f = 100 \text{ m/s}$

LP3. A uniform rod of length $l = 40 \text{ cm}$ and mass $M = 1.5 \text{ kg}$ is attached to a **frictionless pivot** (point O) and is free to rotate about the pivot in the vertical plane as shown in the figure. **The rod is released from rest when it is in the horizontal position.** The moment of inertial of the rod about its center of mass is: $I_{CM} = \frac{1}{12}Ml^2 = 0.02 \text{ kg m}^2$.

a) What is the moment of inertia of the rod about the point O?

$$I_O = I_{CM} + Md^2$$

$$I_O = 0.02 + (1.5)(0.1)^2 = 0.035 \text{ kg m}^2$$

Answer: $I_O = 0.035 \text{ kg m}^2$

b) What is the angular speed of the rod when it is in the vertical position?

$$E_i = E_f$$

$$mgh = \frac{1}{2}I\omega^2$$

$$\omega = \sqrt{\frac{2mgh}{I}} = \sqrt{\frac{2(1.5)(10)(0.1)}{0.035}} = 9.26 \text{ rad/s}$$

Answer: $\omega = 9.26 \text{ rad/s}$

c) What is the linear speed of the point P when the rod is in the vertical position?

$$v = R\omega = (0.3)(9.26) = 2.78 \text{ m/s}$$

Answer: $v = 2.78 \text{ m/s}$