

Physics 101

Fall Semester

Final Exam

Monday, December 25, 2017

05:00 pm - 07:00 pm

Student's Name: Serial Number:

Student's Number:

Section:

Choose your Instructor's Name:

Dr. Ahmed Al-Jassar
Dr. Hala Al-Jassar
Dr. Fatema Al Dosari
Dr. Nasser Demir

Dr. Abdul Mohsen
Dr. Tareq Al Refai
Dr. Abdul Khaleq
Dr. Belal Salameh

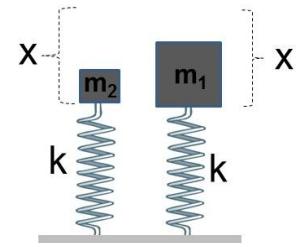
For Instructors use only

Grades:

#	Q1	Q2	Q3	Q4	SP1	SP2	SP3	SP4	SP5	SP6	SP7	LP1	LP2	LP3	Total
1	1	1	1	1	3	3	3	3	3	3	3	5	5	5	40
Pts															

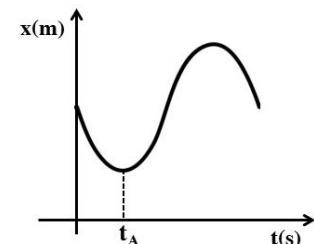
Important:

1. Answer all questions and problems.
2. Full mark = 40 points. Questions are arranged in the above table.
 - i) 4 Questions
 - ii) 7 Short Problems
 - iii) 3 Long Problems.
3. No solution = 0 points.
4. Use SI units.
5. Write the correct answer for each question.
6. Assume $g = 10 \text{ m/s}^2$.
7. Mobiles are strictly prohibited during the exam.
8. Programmable calculators, which can store equations, are not allowed.


Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Questions (Choose the correct answer, one point each)


Q1. Two blocks ($m_1 > m_2$) are placed on two identical vertical springs which are compressed by the same distance x . When the blocks are released they are projected vertically upward. **At their maximum height, both blocks will have:**

- * the same maximum height.
- the same gravitational potential energy.
- * different kinetic energies.
- * different total mechanical energies.

Q2. The position-time graph of an object moving along the x axis is shown in the figure. **The velocity and acceleration of the object at the instant t_A are:**

- * $V = 0, a < 0$.
- * $V = 0, a = 0$.
- $V = 0, a > 0$.
- * $V > 0, a = 0$.

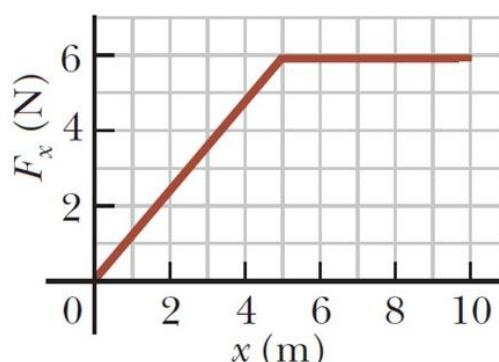
Q3. m_1 and m_2 are two equal masses. m_1 moves with speed v toward a stationary mass m_2 on a frictionless horizontal surface. **The maximum energy transferred to m_2 occurs if the collision is a:**

- one dimensional elastic collision.
- * one dimensional inelastic collision.
- * completely inelastic collision.
- * two-dimensional inelastic collision.

Q4. For a force \vec{F} to be conservative when applied to a particle

- * \vec{F} must have the same value at all points of the particle path.
- * \vec{F} must have the same direction at all points of the particle path.
- * \vec{F} must be always parallel to the displacement of the particle.

- The work done by \vec{F} for motion in closed paths must be zero.

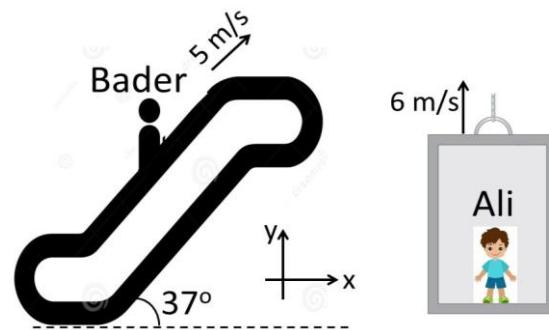

SP1. A 2 kg block is subject to a single force F_x that varies with position as shown in the figure. If the speed of the block at $x=10$ m is 9 m/s **find its speed (in m/s) at $x=0$ m.**

$$W_{total} = \Delta K$$

$$\frac{1}{2}(5)(6) + (5)(6) = \frac{1}{2}mV_f^2 - \frac{1}{2}mV_i^2$$

$$45 = (9)^2 - V_i^2$$

$$V_i = 6 \text{ m/s}$$


Answer: $V_i = 6 \text{ m/s}$

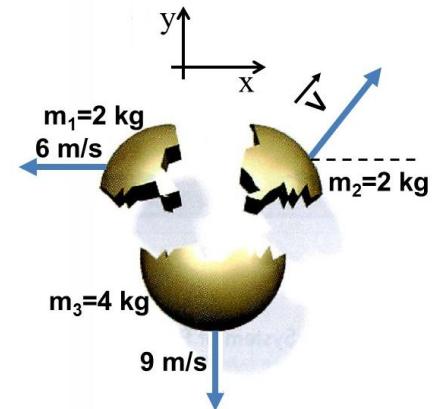
SP2. Bader rides an escalator which moves at a speed of 5 m/s and Ali rides an elevator which moves up at a speed of 6 m/s as shown in the figure. **Find the velocity (in m/s) of Bader with respect to Ali in unit vector notation.**

$$\vec{V}_{A/G} = +6 \hat{j} \text{ m/s}$$

$$\vec{V}_{B/G} = [5 \cos(37^\circ) \hat{i} + 5 \sin(37^\circ) \hat{j}] \text{ m/s} = (4 \hat{i} + 3 \hat{j}) \text{ m/s}$$

$$\vec{V}_{B/A} = \vec{V}_{B/G} - \vec{V}_{A/G} = (4 \hat{i} - 3 \hat{j}) \text{ m/s}$$

$$\text{Answer: } \vec{V}_{B/A} = (4 \hat{i} - 3 \hat{j}) \text{ m/s}$$

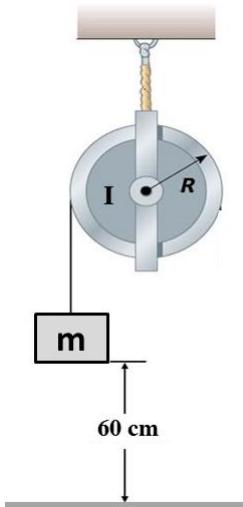

SP3. A stationary object in free space explodes into three pieces as shown in the figure. What is the velocity (in m/s) of the top right piece (m_2) after the explosion? Express your answer in unit vector notation.

$$\sum \vec{p}_i = \sum \vec{p}_f$$

$$0 = m_1 \vec{V}_{1f} + m_2 \vec{V}_{2f} + m_3 \vec{V}_{3f}$$

$$0 = 2(-6 \hat{i}) + 2 \vec{V} + 4(-9 \hat{j})$$

$$\vec{V} = (6 \hat{i} + 18 \hat{j}) \text{ m/s}$$

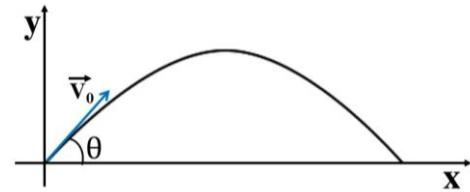

$$\text{Answer: } \vec{V} = (6 \hat{i} + 18 \hat{j}) \text{ m/s}$$

SP4. A 3 kg block is suspended from the free end of a light rope which is wrapped around a frictionless pulley ($R = 0.2 \text{ m}$) as shown in the figure. If the block is released from rest when it is 60 cm above the floor and its speed just before it touches the floor is 3 m/s, calculate the moment of inertia of the pulley (in kg m^2).

$$E_i = E_f$$

$$mgh = \frac{1}{2} m V_f^2 + \frac{1}{2} I \omega_f^2 = \frac{1}{2} m V_f^2 + \frac{1}{2} I \left(\frac{V_f}{R}\right)^2$$

$$I = \frac{2mghR^2}{V_f^2} - mR^2 = \frac{2(3)(10)(0.6)(0.2)^2}{3^2} - 3(0.2)^2 = 0.04 \text{ kg m}^2$$

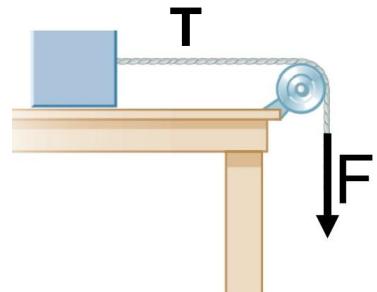

$$\text{Answer: } I = 0.04 \text{ kg m}^2$$

SP5. A stone is projected from the ground level at an angle θ above the horizontal. **If the initial speed (V_0) of the stone is five times greater than its speed at the maximum height, find the angle θ .**

$$V_0 = 5V_0 \cos(\theta)$$

$$\cos(\theta) = \frac{1}{5}$$

$$\theta = \cos^{-1}\left(\frac{1}{5}\right) = 78.5^\circ$$

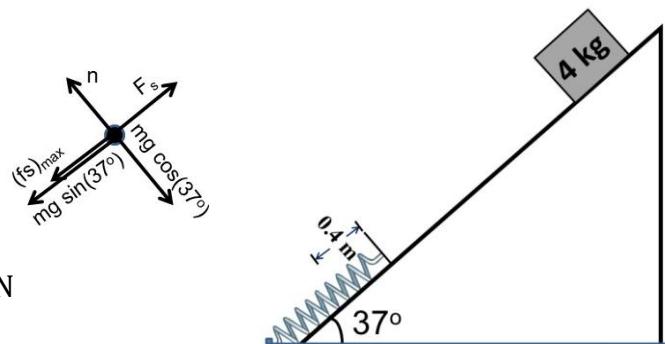

Answer: $\theta = 78.5^\circ$

SP6. A box resting on a **smooth horizontal surface** is attached to a light rope that passes over a frictionless pulley ($R=0.1$ m, $I = 0.01$ kg m²). The rope is pulled from its lower end by a constant force ($F = 7$ N) and the block **accelerates to the right at 3 m/s²** as shown in the figure. **Find the tension force (T) (in N) exerted on the block by the rope.**

$$\alpha = \frac{a}{R} = \frac{3}{0.1} = 30 \text{ rad/s}^2$$

$$\sum \tau = I \alpha = (F - T)R$$

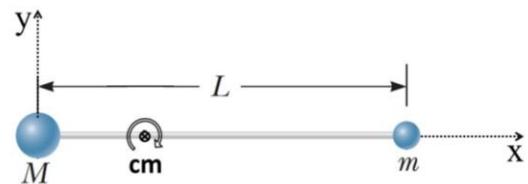
$$T = F - \frac{I\alpha}{R} = 7 - \frac{0.01(30)}{0.1} = 4 \text{ N}$$


Answer: $T = 4$ N

SP7. A 4 kg block slides down a rough incline plane then compresses a spring of force constant $k = 500$ N/m a distance of 0.4 m before stopping. If $\mu_s = 0.8$ and $\mu_k = 0.4$, **will the block move back up the incline? Justify your answer. (No points without drawing the free body diagram)**

$$F_{\text{spring}} = kx = 500(0.4) = 200 \text{ N}$$

$$mg \sin(\theta) + (f_s)_{\text{max}} = mg(\sin(\theta) + \mu_s \cos(\theta)) = 49.6 \text{ N}$$


Since $F_{\text{spring}} > (mg \sin(\theta) + (f_s)_{\text{max}})$, then the block will move back up the incline.

Part III: Long Problems (5 points each)

LP1. Two small balls with masses $M=0.4$ kg and $m=0.2$ kg are connected by a very light rigid rod of length $L=1.2$ m as shown in the figure.

a) Find the position (in m) of the center of mass of the system of the two balls with respect to the origin.

$$x_{cm} = \frac{Mx_1 + mx_2}{M + m} = \frac{(0.4)(0) + (0.2)(1.2)}{0.4 + 0.2} = 0.4 \text{ m}$$

Answer: $X_{cm} = 0.4 \text{ m}$

b) Find the moment of inertia (in kg m^2) of the system about the center of mass.

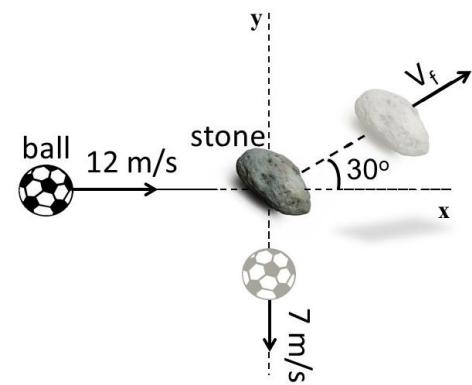
$$I_{cm} = Mx_1^2 + mx_2^2 = (0.4)(0.4)^2 + (0.2)(0.8)^2 = 0.192 \text{ kg m}^2$$

Answer: $I_{cm} = 0.192 \text{ kg m}^2$

c) The system starts to rotate from rest with a constant acceleration of 2 rad/s^2 about an axis which passes through its center of mass. Find the rotational kinetic energy (in J) of the system at $t=3$ s.

$$\omega_f = \omega_i + \alpha t$$

$$= 0 + 2(3) = 6 \text{ rad/s}$$


$$K_{rot} = \frac{1}{2} I \omega^2 = \frac{1}{2} (0.192)(6)^2 = 3.5 \text{ J}$$

Answer: $K_{rot} = 3.5 \text{ J}$

LP2. A 2 kg stone rests on a frictionless horizontal surface. A ball of mass 0.5 kg traveling horizontally at 12 m/s strikes the stone and deflects at right angle relative to its original direction as shown in the figure. The stone moves after the collision in the shown direction.

a) Find the velocity of the center of mass of the system after the collision in unit vector notation.

$$\vec{V}_{cm_i} = \vec{V}_{cm_f} = \frac{m_1 \vec{V}_{1i} + m_2 \vec{V}_{2i}}{m_1 + m_2} = \frac{0.5(12\hat{i}) + 0}{0.5 + 2} = +2.4\hat{i} \text{ m/s}$$

Answer: $\vec{V}_{cm_f} = +2.4\hat{i} \text{ m/s}$

b) Find the speed (V_f) (in m/s) of the stone after the collision.

$$\sum p_{yi} = \sum p_{yf}$$

$$0 + 0 = 2V_f \sin 30^\circ - 0.5(7)$$

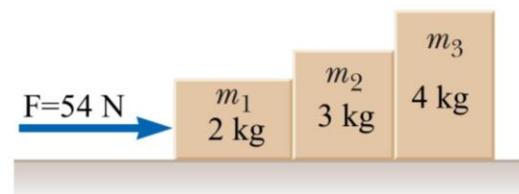
$$V_f = 3.5 \text{ m/s}$$

Answer: $V_f = 3.5 \text{ m/s}$

c) Calculate the change in the kinetic energy (in J) of the system due to the collision.

$$\Delta K = \sum K_f - \sum K_i$$

$$\left[\frac{1}{2}(0.5)(7)^2 + \frac{1}{2}(2)(3.5)^2 \right] - \left[\frac{1}{2}(0.5)(12)^2 \right] = -11.5 \text{ J}$$


Answer: $\Delta K = -11.5 \text{ J}$

LP3. Three blocks are in contact with one another on a **rough horizontal surface** ($\mu_k=0.4$), a constant horizontal force F is applied to the first block as shown in the figure.

a) **Find the magnitude of the acceleration of the blocks.**

$$F - \mu_k Mg = Ma$$

$$a = \frac{F - \mu_k Mg}{M} = \frac{54 - 0.4(9)(10)}{9} = 2 \text{ m/s}^2$$

Answer: $a = 2 \text{ m/s}^2$

b) **Find the magnitude of the contact force between m_1 and m_2 .**

For m_1 : $F - \mu_k m_1 g - F_{21} = m_1 a$

$$F_{21} = F - \mu_k m_1 g - m_1 a = 54 - 0.4(2)(10) - 2(2) = 42 \text{ N}$$

Answer: $F_{21} = 42 \text{ N}$

c) **Find the total work done on the three blocks as they move 6 m to the right.**

$$W_{\text{total}} = W_F + W_{f_k}$$

$$F(r) + f_k(r) = (F - \mu_k Mg)(r)$$

$$= (54 - 0.4(9)(10))(6) = 108 \text{ J}$$

Answer: $W_{\text{total}} = 108 \text{ J}$