Kuwait University

Physics Department

PHY 102

General Physics II

Second Midterm Examination Fall Semester 2025 - 2026

November 29, 2025 Time: 11:00 AM - 12:30 PM

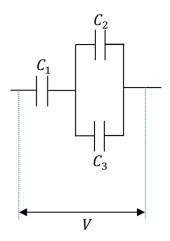
Name:	Student No:								
Section No:	Serial No:								
Instructors: Drs. Abdul Mohsen, Yahya, Lajko, Sharma, & Vagenas									
Fundamental constants									
$k = \frac{1}{4\pi\epsilon_{o}} = 9.0 \times 10^{9} \text{ N.m}^{2} / \text{C}^{2}$	(Coulomb constant)								
$\varepsilon_o = 8.85 \times 10^{-12} \mathrm{C}^2 / (\mathrm{N} \cdot \mathrm{m}^2)$	(Permittivity of free space)								
$\mu_0=4\pi\times 10^{7}~T.m/A$	(Permeability of free space)								
$ e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)								
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)								
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)								
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)								
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)								
$\label{eq:memory} \begin{split} & \frac{\text{Prefixes of units}}{m=10^{\text{-3}}} & \mu = 10^{\text{-6}} \\ & k=10^3 & M=10^6 \end{split}$	$n = 10^{-9}$ $p = 10^{-12}$ $G = 10^{9}$ $T = 10^{12}$								
For use by Instructors only									

Problems	1	2	3	4	5	6	7	8	Questions	Total
Marks										

Instructions to the Students:

- 1. Mobile or other electronic devices are **strictly prohibited** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.


1. In the given network of capacitors with $C_1 = 30$ nF and $C_2 = C_3 = 10$ nF, the charge on capacitor C_1 is $Q_1 = 60$ nC. Find the electric energy stored in the network. [4 points]

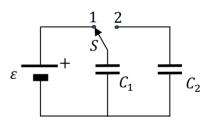
$$C_{23} = C_2 + C_3 \Longrightarrow C_{23} = 20 \text{ nF}$$

$$\frac{1}{c_{123}} = \frac{1}{c_1} + \frac{1}{c_{23}} \Longrightarrow C_{123} = 12 \text{ nF}$$

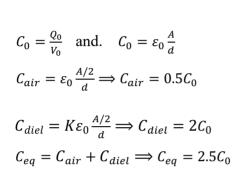
$$Q_1 = Q_{23} = Q_{total} = 60 \text{ nC}$$

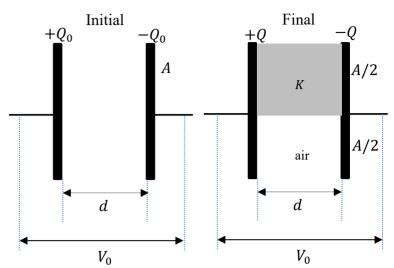
$$U_{total} = \frac{1}{2} \frac{Q_{total}^2}{C_{123}} \Longrightarrow U_{total} = 150 \text{ nJ}$$

2. A capacitor $C_1 = 15 \,\mu\text{F}$ is charged by a source of emf $\varepsilon = 6 \,\text{V}$. Then, the switch S is placed to position 2. The capacitor $C_2 = 30 \,\mu\text{F}$ is uncharged initially. Find the final electric charge stored in C_2 . [4 points]

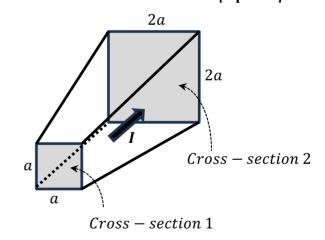

Position 1:
$$Q = C_1 \varepsilon \implies Q = 90 \mu C$$

Position 2:
$$C_{12} = C_1 + C_2 \Longrightarrow C_{12} = 45 \mu F$$


$$V = \frac{Q}{C_{12}} \Longrightarrow V = 2 \text{ V}$$

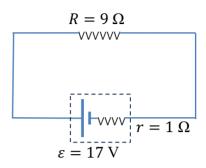

$$V = V_1 = V_2 = 2 \text{ V}$$

$$C_2 = \frac{Q_2}{V_2} \Longrightarrow Q_2 = C_2 V_2 \Longrightarrow Q_2 = 60 \ \mu\text{C}$$

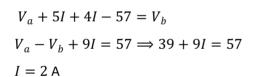

3. An air-filled parallel-plate capacitor with a surface area A, a plate separation d, and capacitance C_0 is charged by a battery V_0 and its initial charge is $Q_0 = 15$ nC. Then, while the battery remains connected, the capacitor is half filled with a dielectric material of dielectric constant K = 4, as shown. What is the new capacitance? [4 points]

4. A conductor has variable square cross-section as shown. The electric current in the conductor is steady, and the drift speed of the electrons at the cross-section 1 is 9.2×10^{-4} m/s. Find the drift speed at the cross-section 2. [4 points]

$$\begin{split} I_1 &= I_2 = I \\ J_1 A_1 &= J_2 A_2 \\ n|q|v_{d1}a^2 &= n|q|v_{d2}(2a)^2 \\ v_{d1} &= 4v_{d2} \Longrightarrow v_{d2} = \frac{v_{d1}}{4} \\ v_{d2} &= 2.3 \times 10^{-4} \text{ m/s} \end{split}$$

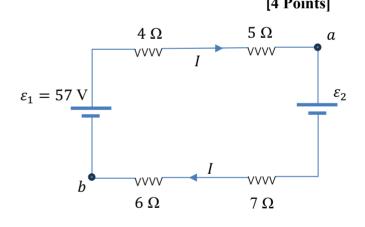

5. In the circuit below, calculate the total energy dissipated in the resistor with resistance R in a time period of 3 minutes. [4 points]

$$IR = \varepsilon - Ir \Rightarrow I = \frac{\varepsilon}{R+r} \Rightarrow I = 1.7 \text{ A}$$


$$P_R = I^2 R \Rightarrow P_R = 26 \text{ W}$$

$$P_R = \frac{U}{\Delta t} \Rightarrow U = P_R \Delta t$$

$$U = 26 \times 180 \text{ J} \Rightarrow U = 4,681 \text{ J}$$



6. In the circuit below, the potential difference between a and b is 39 V, find the source of emf ε_2 .

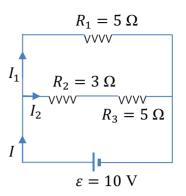
Loop rule:

$$\varepsilon_1 - 4I - 5I - \varepsilon_2 - 7I - 6I = 0$$

 $\varepsilon_2 = \varepsilon_1 - 22I \Longrightarrow \varepsilon_2 = 13 \text{ V}$

Junction rule: $I = I_1 + I_2$

Loop rules:


Lower loop

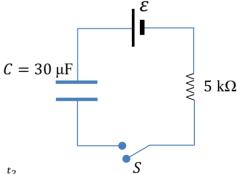
$$10 - 3I_2 - 5I_2 = 0 \Longrightarrow I_2 = 1.25 \text{ A}$$

Big loop

$$10 - 5I_1 = 0 \Longrightarrow I_1 = 2 \text{ A}$$

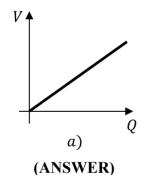
$$I = I_1 + I_2 \Longrightarrow I = 3.25 \text{ A}$$

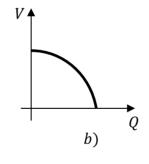
8. In the RC circuit below, the switch S is closed at time t = 0 s. At time t_1 , the charge of the capacitor is 90 μ C and the electric current in the circuit is 1 mA. Find the electric current in the circuit at the time $t_2 = 100 \,\mu$ s. [4 Points]

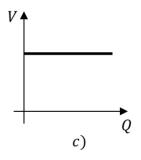

At time t_1 , apply loop rule:

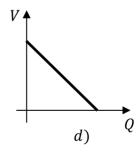
$$\varepsilon - i(t_1)R - \frac{q(t_1)}{c} = 0$$

$$\varepsilon - (5 \times 10^3) \times (1 \times 10^{-3}) - \frac{90 \times 10^{-6}}{30 \times 10^{-6}} = 0 \Longrightarrow \varepsilon = 8 \text{ V}$$

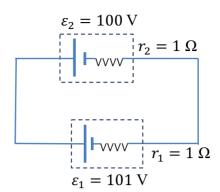

$$i(t) = \frac{dq}{dt} \Longrightarrow i(t) = \frac{Q}{RC}e^{-\frac{t}{RC}} \Longrightarrow i(t_2) = \frac{Q}{RC}e^{-\frac{t_2}{RC}} \Longrightarrow i(t_2) = \frac{\varepsilon}{R}e^{-\frac{t_2}{RC}}$$

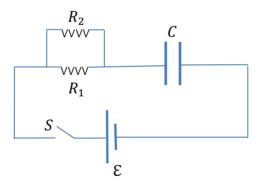

$$i(t_2) = 1.6 \text{ mA}$$




PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

- 1. Which statement is correct? The capacitance of a capacitor depends on
 - a) the charge of the capacitor.
 - b) the potential difference between the plates of the capacitor.
 - c) the geometry of the capacitor and the matter between its plates. (ANSWER)
 - d) all the above.
- 2. An air-filled parallel-plate capacitor with plate separation d, area A, and capacitance C is charged by a battery V and the battery remains connected. Then a slab of dielectric material is inserted completely filling the space between the plates of the capacitor. The electric energy density will
 - a) remain the same.
 - b) increase. (ANSWER)
 - c) decrease.
 - d) be zero.
- 3. Which diagram shows the potential difference versus electric charge (V vs Q) in a capacitor?




- 4. The value of the resistance R of a cylindrical conductor depends on
 - a) the material of the conductor.
 - b) the length of the conductor.
 - c) the area of the cross-section of the conductor.
 - d) all the above.

(ANSWER)

- 5. In the circuit below, the terminal voltage across the upper battery is:
 - a) $V_{term.2} = \varepsilon_2 Ir_1$.
 - b) $V_{term,2} = \varepsilon_2 Ir_2$.
 - c) $V_{term,2} = \varepsilon_2 + Ir_1$.
 - d) $V_{term,2} = \varepsilon_2 + Ir_2$. (ANSWER)

- 6. If two resistors R_1 and R_2 are connected in parallel and have currents I_1 and I_2 , respectively, what is their relation?
 - a) $\frac{I_1}{I_2} = \frac{R_1}{R_2}$.
 - b) $\frac{I_1}{I_2} = \frac{R_2}{R_1}$. (ANSWER)
 - c) $\frac{I_1}{R_1} = \frac{R_2}{I_2}$.
 - d) $\frac{I_1}{I_2} = \frac{R_1 R_2}{R_1 + R_2}$.
- 7. In the RC circuit below, the time constant τ is equal to
 - a) R_1C .
 - b) $(R_1 + R_2)C$.
 - c) $\frac{R_1+R_2}{R_1R_2}C$.
 - d) $\frac{R_1 R_2}{R_1 + R_2} C$. (ANSWER)

- 8. In an RC circuit, while the capacitor is discharging, the potential difference across the resistance R
 - a) remains the same.
 - b) decreases exponentially. (ANSWER)
 - c) increases exponentially.
 - d) increases and then decreases.