Kuwait University

Physics Department

Physics 102 Midterm-1 Examination

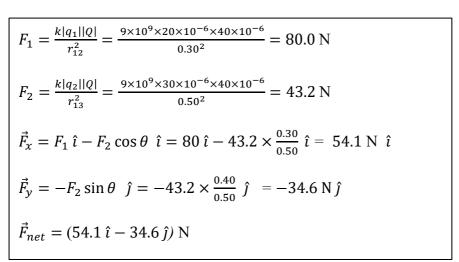
Fall Semester 2025 October 25, 2025

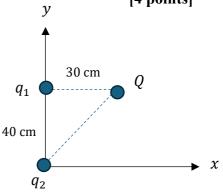
Time: 11:00 a.m. – 12:30 p.m.

Name: Student ID No:

Section: Serial No.: Instructors: Drs. Abdul Mohsen, Yahya, Lajko, Sharma, & Vagenas									
Fundamental constants									
$k = \frac{1}{4\pi\epsilon_{o}} = 9.0 \times 10^{9} \text{ N.m}^{2} / \text{C}^{2}$	(Coulomb constant)								
$\varepsilon_o = 8.85 \times 10^{-12} \mathrm{C}^2 / \left(\mathrm{N} \cdot \mathrm{m}^2\right)$	(Permittivity of free space)								
$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$	(Permeability of free space)								
$ e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)								
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)								
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)								
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)								
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)								
Prefixes of units									
$\begin{array}{ll} m = 10^{\text{-}3} & \qquad \mu = 10^{\text{-}6} & \qquad n = 10^{\text{-}9} \\ k = 10^3 & \qquad M = 10^6 & \qquad G = 10^9 \end{array}$	$p = 10^{-12}$ $T = 10^{12}$								

For use by Instructors only


Ques.	1	2	3	4	5	6	7	8	Questions	Total
Marks										

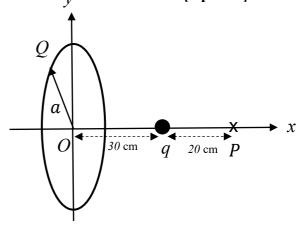

Important:

- 1. Mobiles or other electronic devices are **strictly prohibited** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

Part I. Solve the following problems. Show your solutions in details.

1. Three charges $q_1 = -20 \,\mu\text{C}$, $q_2 = +30 \,\mu\text{C}$, and $Q = -40 \,\mu\text{C}$ are placed on the *xy*-plane. Calculate the net force \vec{F}_{net} on Q.

2. A uniformly charged ring (with charge Q = 50 nC and radius a = 0.24 m) with its axis along the x-axis has its center at origin. A charge q = -20 nC is located at distance 30 cm from the center, as shown. What is the net electric field \vec{E}_{net} at point P?


[4 points]

$$\vec{E}_{ring} = k \frac{|q|x}{(0.5^2 + a^2)^{\frac{3}{2}}} \hat{i} = 1.32 \times 10^3 \frac{\text{N}}{\text{C}} \hat{i}$$

$$\vec{E}_q = k \frac{|q|}{(0.2)^2} (-\hat{i}) = -4.50 \times 10^3 \frac{\text{N}}{\text{C}} \hat{i}$$

$$\vec{E}_{net} = \vec{E}_{ring} + \vec{E}_q = 1.32 \times 10^3 \frac{\text{N}}{\text{C}} \hat{i} -4.50 \times 10^3 \frac{\text{N}}{\text{C}} \hat{i}$$

$$= -3.18 \times 10^3 \frac{\text{N}}{\text{C}} \hat{i}$$

3. A line charge of length L=0.30 m, with charge Q=15.0 nC distributed uniformly along its length, lies along the x-axis, as shown. Derive the electric field \vec{E} at point P that is at distance a=0.20 m from the line charge. [4 points]

$$d\vec{E} = \frac{k|dQ|}{r^2}(\hat{\imath}) = \frac{k\lambda dx}{(L+a-x)^2}(\hat{\imath})$$

$$\vec{E} = \int_0^L \frac{k|\lambda|dx}{(L+a-x)^2}(\hat{\imath}) = -\int_{L+a}^a \frac{k|\lambda|dx'}{x'^2}(\hat{\imath})$$

$$= k\lambda \left[\frac{1}{x'}\right]_{L+a}^a = k\lambda \left[\frac{1}{a} - \frac{1}{a+L}\right] = k\frac{|Q|}{a(a+L)}(\hat{\imath})$$

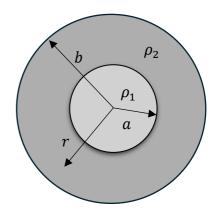
$$\vec{E} = 1.35 \times 10^3 \text{ N/C } (\hat{\imath})$$

4. A sphere of radius a=4 cm has a uniform volume charge density $\rho_1=5$ nC/m³ and a concentric spherical shell of inner radius a, and outer radius b=9 cm has a uniform volume charge density $\rho_2=-13$ nC/m³. Find the magnitude and direction of the electric field at a distance r=7 cm.

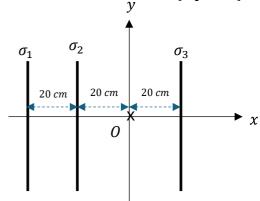
[4 points]

$$\Phi_{E} = EA = \frac{q_{enc}}{\epsilon_{0}}$$

$$A = 4\pi r^{2} = 0.0616m^{2}$$


$$q_{enc} = q_{a} + q_{r}$$

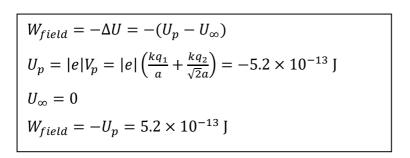
$$q_{a} = \frac{4}{3}\pi a^{3}\rho_{1} = 1.34 \times 10^{-12} \text{ C}$$

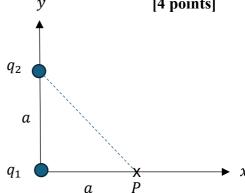

$$q_{r} = \frac{4}{3}\pi (r^{3} - a^{3})\rho_{2} = -1.52 \times 10^{-11} \text{ C}$$

$$E = \frac{q_{enc}}{A.\epsilon_{0}} = \frac{-1.39 \times 10^{-11}}{0.0616 \times 8.85 \times 10^{-12}} = -25.4 \text{ N/C}$$

$$|E| = 25.4 \text{ N/C}, \text{ inward}$$

5. Three uniformly charged infinite sheets are perpendicular to the x-axis, as shown below. Sheet 1 has $\sigma_1 = -10 \text{ nC/m}^2$ and sheet 2 has $\sigma_2 = 4 \text{ nC/m}^2$. If the net electric field is $\vec{E}_{net} = 440 \text{ N/C} \hat{\imath}$ at point 0, what is σ_3 ?

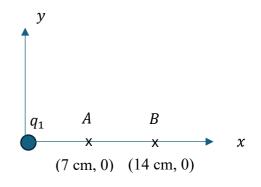



 $\vec{E}_{net} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3$ $440 \,\hat{\imath} = -\frac{10 \times 10^{-9}}{2\epsilon_0} \hat{\imath} + \frac{4 \times 10^{-9}}{2\epsilon_0} \hat{\imath} + \vec{E}_3$ $\vec{E}_3 = 779 \text{ N/C } \hat{\imath}$ $|\sigma_3| = 2\epsilon_0 |\vec{E}_3| = 13.8 \times 10^{-9} \text{ C/m}^2$ $\sigma_3 = -13.8 \times 10^{-9} \text{ C/m}^2$

6. Two charges $q_1 = -8 \,\mu\text{C}$, and charge $q_2 = -4 \,\mu\text{C}$ are located on the *xy*-plane, as shown below (where $a = 3 \,\text{cm}$). What is the work done by the electric field to bring a *proton* from infinity to point *P*?

y

[4 points]

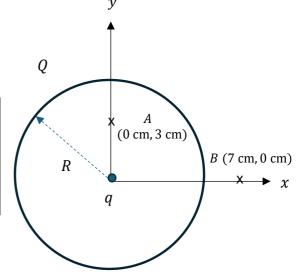


7. A charge $q_1 = -3 \,\mu\text{C}$ is fixed at the origin. If $q_2 = -6 \,\mu\text{C}$ moves with the initial velocity $\vec{v}_i = 350 \,\frac{\text{m}}{\text{s}} \,\hat{\imath}$ at point A and the final velocity $\vec{v}_f = 700 \,\frac{\text{m}}{\text{s}} \,\hat{\imath}$ at point B, calculate the mass of q_2 . [4 points]

$$E_A = E_B \to K_A + U_A = K_B + U_B$$

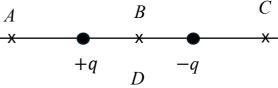
$$\frac{1}{2} m v_i^2 + \frac{k q_1 q_2}{r_A} = \frac{1}{2} m v_f^2 + \frac{k q_1 q_2}{r_B}$$

$$m = \frac{2k q_1 q_2 \left(\frac{1}{r_A} - \frac{1}{r_B}\right)}{(v_f^2 - v_i^2)} = 6.3 \times 10^{-6} \text{ kg}$$

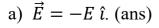


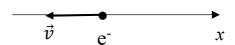
8. A conducting thin spherical shell of radius R=5 cm is centered at the origin of the *xy*-plane and has an electric charge Q=20 nC. A point charge q=-15 nC is located at the center of the shell. Calculate the potential difference V_A-V_B . [4 points]

$$V_A = \frac{kQ}{R} + \frac{kq}{r_A} = -900 \text{ V}$$

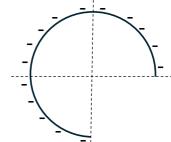

$$V_B = \frac{kQ}{r_b} + \frac{kq}{r_b} = 643 \text{ V}$$

$$V_A - V_B = -1543 \text{ V}$$

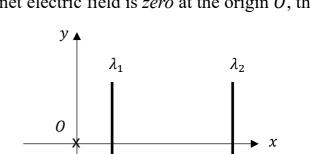



Part II. Conceptual Questions (each carries 1 point). Tick the best answer.

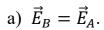
1. Two charges +q and -q are placed along the x-axis, as shown. At which point is the magnitude of the net electric field largest? A B



- a) A.
- b) *B*. (ans)
- c) C.
- d) D.
- 2. An electron is moving with velocity \vec{v} in the -x direction. Which of the applied electric fields below *may* stop the electron?

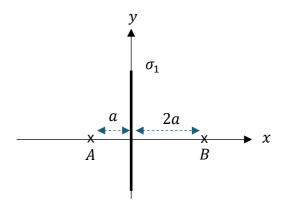


- b) $\vec{E} = E \hat{\imath}$.
- c) $\vec{E} = -E \ \hat{\jmath}$.
- d) $\vec{E} = E \hat{\jmath}$.
- 3. A negative charge is distributed uniformly along the circular arc as shown in the figure. What is the direction of the net electric field at *the center* of the arc?



- a) ←
- b) >
- c) < (ans)
- $d) \rightarrow$
- 4. Two infinitely long wires carrying uniform linear charge densities $\lambda_1 > 0$ and λ_2 are placed on the xy-plane, as shown below. If the net electric field is zero at the origin O, then λ_2 must be

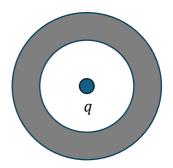
- a) positive.
- b) negative. (ans)
- c) zero.
- d) The same as λ_1 .


5. An infinite sheet of a uniform surface charge σ_1 is placed perpendicular to the xy-plane, as shown. If the electric field at point A is \vec{E}_A , then the electric field at point B is

b)
$$\vec{E}_B = -\vec{E}_A$$
. (ans)

c)
$$\vec{E}_B = \frac{\vec{E}_A}{2}$$
.

d)
$$\vec{E}_B = \frac{\vec{E}_A}{4}$$
.

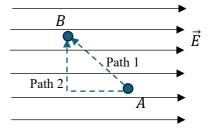

6. A conducting shell carries Q = 8 nC on the outer surface. By adding a point charge q = 2 nC at the center of the charged conducting shell, what will be the charge on the outer surface of the conducting shell?

a)
$$q_{out} = 2 \text{ nC}$$
.

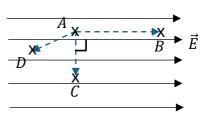
b)
$$q_{out} = 6 \text{ nC}.$$

c)
$$q_{out} = 8 \text{ nC}$$
.

d)
$$q_{out} = 10 \text{ nC. (ans)}$$


7. If q moves in a uniform electric field as shown. The work done by the electric field to move q from A and B via Path 1 is W_1 , and Path 2 is W_2 . What is the relationship between W_1 and W_2 ?

a)
$$W_1 > W_2$$
.


b)
$$W_1 < W_2$$
.

c)
$$W_1 = W_2$$
. (ans)

d)
$$W_1 = -W_2$$
.

- 8. For a uniform electric field, as shown below, which path has $\Delta V = 0$?
 - a) From A to B.
 - b) From A to C. (ans)
 - c) From A to D.
 - d) None

