Kuwait University

Physics Department

Physics 121

First Midterm Exam Fall Semester (2025-2026)

October 25, 2025 Time: 14:00 – 15:30

Student's Name:	Serial Number:
Student's Number:	. Section:
Instructors: Drs. Al-Refae, Alfailakawi, Alotaibi, Burahmah,	Hadipour, Kokkalis, Razee

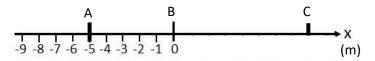
Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 27 points as arranged in the table below.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 9.8 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

For use by instructors

Grades:

#	P1	P2	Р3	P4	P5	P6	P7	Total
	3	4	4	4	4	4	4	27
Pts								


P1. A person begins to move on x-axis from point A to point B with constant acceleration 2.8 m/s². Then, after a short break and with the same initial speed (v_B) , he travels further from point B with constant acceleration -2 m/s² and come to rest at point C in total time of 0.4 minutes.

a) Find the position of the point C on the x-axis.

(2 points)

b) What is average velocity \bar{v} of the person for whole trip?

(1 point)

$$v_B^2 = v_A^2 + 2a(x_B - x_A) \rightarrow v_B = 5.3 \frac{\text{m}}{\text{s}}$$

$$v_C^2 = v_B^2 + 2a(x_C - x_B) \rightarrow x_C = +7 \text{ m}$$

$$\bar{v} = \frac{\Delta x}{t} = \frac{x_C - x_A}{t} = \frac{7 - (-5)}{0.4 \times 60} = 0.5 \frac{\text{m}}{\text{s}}$$

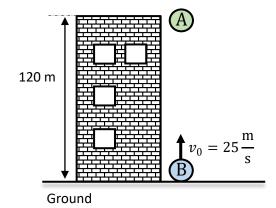
P2. Ball **A** is dropped from top of a building that is 120 m high, while ball **B** is thrown vertically upward from the ground with an initial velocity of 25 m/s. Ignore air resistance.

a) After how long both balls meet at the same height?

(3 points)

b) At that moment, what is their height?

(1 point)


Ball A:

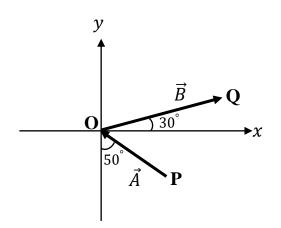
$$y_A = y_0 + v_0 t + \frac{1}{2}gt^2 \rightarrow y_A = 120 + 0 + \frac{1}{2}gt^2$$

Ball B:

$$y_B = y_0 + v_0 t + \frac{1}{2}gt^2 \rightarrow y_B = 0 + 25t + \frac{1}{2}gt^2$$

$$y_A = y_B = h \to 120 = 25t \to t = 4.8 \text{ s}$$

$$h = y_B = 25t + \frac{1}{2}gt^2 = 25 \times 4.8 + \frac{1}{2} \times (-9.8) \times (4.8)^2 = 7.1 \text{ m}$$


P3. A person walks from point **P** to point **Q** by following paths A = 200 m and B = 350 m as shown in figure. Find the magnitude and direction of his total displacement. (4 points)

$$D_y = A_y + B_y = A\cos 50^{\circ} + B\sin 30^{\circ} = 303.5 \text{ m}$$

$$D = \sqrt{D_x^2 + D_y^2} = 338.5 \text{ m}$$

$$\tan \theta = \frac{D_y}{D_x} \to \theta = \tan^{-1} \left(\frac{303.5}{149.9} \right) = 63.7^{\circ}$$

P4. Block $m_1 = 12$ kg is fixed on top of block $m_2 = 18$ kg that is resting on rough horizontal ground. A horizontal force with magnitude F = 260 N is applied on block 2, as shown in figure. The kinetic coefficient of friction between block 2 and the ground is $\mu_k = 0.3$.

a) Find the acceleration of each block.

(3 points)

b) What is the contact force between two blocks?

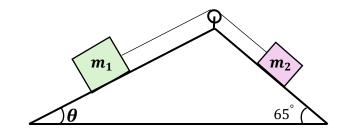
(1 point)

$$F - F_{fr} = (m_1 + m_2)a \rightarrow F - \mu_k F_N = (m_1 + m_2)a$$

$$\vec{F}$$
 m_1 m_2

$$F_N = (m_1 + m_2)g$$

$$a = \frac{F - \mu_k (m_1 + m_2)g}{m_1 + m_2} = 5.72 \frac{\text{m}}{\text{s}^2}$$


$$|F_{21}| = |F_{12}| = m_1 g = 12 \times 9.8 = 117.6 \text{ N}$$

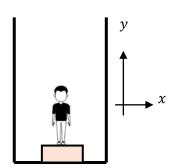
P5. Two boxes of mass $m_1 = 10$ kg and $m_2 = 7$ kg are connected by a massless cord over a frictionless pulley as shown. Find the angle θ so that boxes remain at rest. Ignore frictions.

(4 points)

$$T - m_1 g sin\theta = 0 \rightarrow T = m_1 g sin\theta$$

$$m_2 g sin65^{\circ} - T = 0 \rightarrow T = m_2 g sin65^{\circ}$$

$$m_1 g sin \theta = m_2 g sin 65^{\circ} \rightarrow sin \theta = \frac{m_2 sin 65^{\circ}}{m_1}$$


$$\sin\theta = \frac{7 \times 0.9}{10} = 0.63 \rightarrow \theta = 39^{\circ}$$

P6. An 85 kg person stands on a scale in an elevator. Shortly, <u>before the elevator stops</u>, the scale reading is 78 kg.

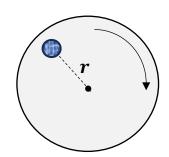
- a) Calculate the magnitude and direction of the acceleration of the elevator. (3 points)
- b) Is the elevator moving upward or downward before it stops? (1 point)

$$F_N - mg = ma$$

$$a = \frac{F_N - mg}{m} = \frac{g \times (78 - 85)}{85} = -0.81 \text{ m/s}^2$$

Upward, the elevators moving from the ground to the top floor.

$$(v_0 > v = 0 \& a = downward \rightarrow v = upward)$$


P7. A coin is placed 5 cm from the axis of a rotating turntable of variable speed. The coefficient of static friction between the coin and the table is $\mu_s = 0.4$. Find the maximum frequency of the turntable to keep the coin from sliding off the table. (4 points)

$$\sum F_R = \frac{mv^2}{r} = F_{fr}$$

$$F_{fr} = \mu_S mg \to \mu_S mg = \frac{mv^2}{r}$$

$$v = \sqrt{r\mu_S g} \to v = 0.44 \text{ m/s}$$

$$f = \frac{v}{2\pi r} = 1.4 \text{ 1/s}$$

