Kuwait University

Physics Department

Physics 101

Spring Semester First Midterm Exam Saturday, October 25, 2025 8:00 - 9:30 AM

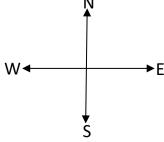
Student's Name:		Serial Number:				
Student's Numbe	r:	Section:				
Choose your Instru	ctor's Name:					
Instructors: Drs.	Al Dosari, Al Jassar, Al Qattan, Al Smadi, Askar, Demir, Salameh,					
	Zaman					

For Instructors use only

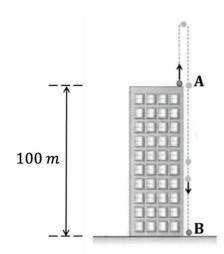
Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2	2	2	2	3	3	1	1	1	1	20
Pts												

Important:


- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 20 points as arranged in the above table.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

GOOD LUCK


Part I: Short Problems (2 points each)

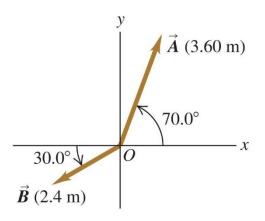
SP1. Find the angle between the vector $\vec{A} = 6\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$ and the + x axis.

SP2. A Kuwait University professor starts walking 5 m East, then 15 m at 37 degrees North of West. Find the **magnitude and direction of the resultant displacement**.

SP3. A ball is thrown vertically upward from point A at the top of a building 100 m high, as shown. It reaches its $\underline{\text{maximum height}}$ after 2 $\underline{\text{seconds}}$. Find its velocity (in m/s) at point B, just before it touches the ground.

SP4. An object moves in the *xy plane* with its position vector as a function of time given by:

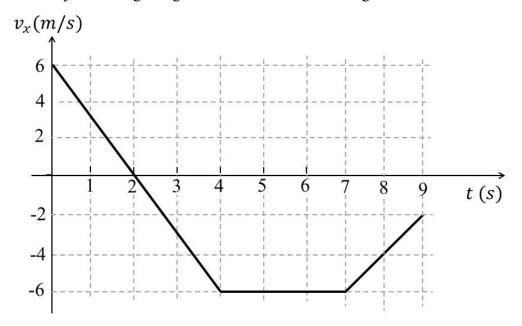
 $\vec{r}(t) = (t^2) \hat{\imath} + (8t - t^2) \hat{\jmath}$, where \vec{r} is measured in *meters* and t is measured in *seconds*. Find the time when the velocity $\vec{v}(t)$ is perpendicular to the acceleration $\vec{a}(t)$.


SP5. A stone is thrown from point A with an initial speed v_0 . The stone strikes the roof of a building at point B. If the time to travel from point A to point B is 2 seconds, and the height h = 16 m, find the initial velocity \vec{v}_0 in unit vector notation.

6 m

Part II: Long Problems (3 points each)

LP1. Given two vectors \vec{A} and \vec{B} with their magnitudes and directions shown in the figure.


(a) Find the vector $\vec{C} = 2\vec{A} - \vec{B}$, in unit vector notation.

(b) Find the scalar product $\overrightarrow{A} \cdot \overrightarrow{B}$

(c) Find the vector product $\vec{A} \times \vec{B}$. Indicate the magnitude and direction.

LP2. The velocity time graph of an object moving along the x-axis is shown in the figure.

(a) Find the object's <u>acceleration</u> at t = 2 seconds.

(b) Find when the object stops momentarily.

(c) Find the total distance traveled between t = 0 and t = 7s.

Part III: Questions (Choose the correct answer, one point each)

- Q1. A particle moves along the x-axis and has a position given by $x(t) = t^2 + 10$ where x is in meters and t is in seconds. Which of the following statements is true when t > 0?
 - * The particle is at the origin at some time.
 - * The velocity of the particle doubles every second.
 - * The acceleration of the particle is constant.
 - * The particle changes its direction some time.
- Q2. Given two vectors \vec{A} and \vec{B} such that $[\vec{A}] = 3$ and $[\vec{B}] = 4$. Which of the following represents the allowed range for the magnitude of their cross product $[\vec{A} \times \vec{B}]$?

*
$$\left[\overrightarrow{A} \times \overrightarrow{B} \right] > 12$$

*
$$\left[\overrightarrow{A} \times \overrightarrow{B}\right] < -12$$

*
$$0 \le \left[\overrightarrow{A} \times \overrightarrow{B} \right] \le 12$$

$$*-12 \le \left[\overrightarrow{A} \times \overrightarrow{B} \right] \le 0$$

Q3. The value of $\hat{j} \cdot (\hat{k} \times \hat{i})$ is

* î

Q4. A particle moves in <u>circular motion at constant speed</u>. Which of the following is a possible set of velocity and acceleration vectors for the particle?

*
$$\vec{v} = 2\hat{\imath}$$
, $\vec{a} = 0$

*
$$\vec{v} = 2\hat{\imath}$$
, $\vec{a} = -6\hat{\imath}$

*
$$\vec{v} = 2\hat{\imath}$$
, $\vec{a} = -6\hat{\imath} + 6\hat{\jmath}$

*
$$\vec{v} = 2\hat{\imath}$$
, $\vec{a} = 6\hat{\jmath}$