Kuwait University

Physics Department

Physics 101

Summer Semester Second Midterm Exam Saturday, July 17, 2025 10:00 PM - 11:30 PM

Student's Name:	Serial Number:
-----------------	----------------

Student's Number: Section:

Choose your Instructor's Name:

Instructors: Drs. Al Dosari, Al Jassar, Al Qattan, Al Smadi, Salameh, Zaman

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	(P)	7 ^{Q2}	Q3	Q4	Total
	2	2	2	2	2	3	3	$\mathcal{J}_{(i)}$	1	1	1	20
Pts						۷	M	7				

Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 20 points as arranged in the above table.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Short Problems (2 points each)

SP1. A 0.4 kg stone is projected from ground level with an initial speed of 6 m/s and strikes the ground with a speed of 4 m/s. Calculate the work done by air resistance on the stone.

$$\begin{split} \sum W &= \Delta K \\ W_{air\,resistance} &= \Delta K = \frac{1}{2} m \big(v_f^2 - v_i^2 \big) \\ &= \frac{1}{2} 0.4 \, (4^2 - 6^2) = -4 \, J \end{split}$$

SP2. A 6 kg box moves along the x-axis from the origin under the influence of a variable net force, the net force as a function of position is plotted in the graph. If the box has a speed of 2 m/s at x = 0, find its speed at x = 8 m.

$$\sum W = W_{F_{net}} = \text{Area under the curve}$$

$$= (30)(4) + \frac{1}{2}(4)(30) = 180 J$$

$$\sum W = \Delta K$$

$$180 = \frac{1}{2}m(v_f^2 - v_i^2)$$

$$180 = 3(v_f^2 - 2^2) \Rightarrow v_f = 8 m/s$$

SP3. A 50 kg block is suspended from the lower end of a rope of negligible mass, with the upper end attached to the ceiling of an elevator. The elevator is **moving downward and <u>slowing down</u>** at a rate of $3 m/s^2$. Find the tension in the rope.

$$a = 3 m/s^{2} (upward)$$

 $T - mg = ma$
 $T = m(g + a) = 50(10 + 3) = 650 N$

 30^{o}

SP4. A block of mass m = 8 kg is pulled by a constant force F = 60 N on a rough incline, as shown. If the block moves up the incline at <u>constant speed</u>, find the coefficient of kinetic friction (μ_k) between the block and the surface.

$$n = mg \cos \theta$$

$$F - f_k - mg \sin \theta = 0$$

$$F - \mu_k mg \cos \theta - mg \sin \theta = 0$$

$$\mu_k = \frac{F - mg \sin \theta}{mg \cos \theta} = 0.29$$

SP5. Two blocks $(m_1 = 15 kg, m_2 = 5 kg)$ are in contact on a horizontal, frictionless surface, as shown. A horizontal force of F = 40 N is applied to block 1. Find the magnitude of the force that block 1 exerts on block 2.

$$F = (m_1 + m_2)a$$

$$a = \frac{F}{(m_1 + m_2)} = \frac{40}{20} = 2 \text{ m/s}^2$$

$$F_{12} = m_2 a = 5(2) = 10 \text{ N}$$

Part II: Long Problems (3 points each)

LP1. A block of mass m = 2 kg is released from **rest at point A** and slides inside a **frictionless** circular path of radius R, as shown.

a) Find the speed of the block at point B.

$$\sum W = \Delta K$$

$$W_{mg} = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

$$mgR = \frac{1}{2} m v_B^2 - 0$$

$$v_B = \sqrt{2gR} = \sqrt{2(10)(3.2)} = 8 m/s$$

b) Find the magnitude of the normal force on the block at point B.

$$n - mg = \frac{mv^2}{R}$$

$$n = m\left(g + \frac{v^2}{R}\right) = 2\left(10 + \frac{8^2}{3.2}\right) = 60 \text{ N}$$

c) Find the magnitude of the block's acceleration at point B.

$$a_r = \frac{v^2}{R} = \frac{(8)^2}{3.2} = 20 \ m/s^2$$

- **LP2.** Two blocks $(m_1 = 8 kg, m_2 = 2 kg)$ are connected by a light rope that passes over a massless, frictionless pulley. The horizontal surface is **frictionless**, and a constant force F = 16 N is applied to m_2 , as shown.
 - a) Find the acceleration of the blocks.

for m_{tot}

$$\sum F = (m_1 + m_2) a$$

$$F + m_2 g = (m_1 + m_2) a$$

$$16 + 20 = 10 a$$

$$a = 3.6 \text{ m/s}^2$$

b) Find the tension in the rope.

for m_1

$$T = m_1 a = (8)(3.6) = 28.8 N$$

OR for m_2

$$F + m_2 g - T = m_2 a$$

$$T = F + m_2 g - m_2 a = (16) + 20 - (2)(3.6) = 28.8 N$$

c) Calculate the power delivered by the tension force on block 2 when it is moving downward at a speed of 2 m/s.

$$P = \vec{T} \cdot \vec{v} = |\vec{T}| |\vec{v}| \cos 180^{\circ} = (28.8)(2)(-1) = -57.6 W$$

Part III: Questions (Choose the correct answer, one point each)

Q1. Block A is placed on top of block B. A force $\vec{\mathbf{F}}$ is applied to block B, causing both blocks to accelerate to the right, as shown. Block A does not slip relative to block B. What is the direction of the static friction force between the two blocks?

- * It acts to the right on both blocks A and B.
- * It acts to the left on both blocks A and B.
- It acts to the right on block A and to the left on block B.
 - * It acts to the left on block A and to the right on block B.

Q2. A man pushes a box of mass M on a rough horizontal surface with a force of magnitude F. The box pushes back on the man's hand with a force of magnitude P. If the man and the box accelerate to the

right with a constant acceleration of magnitude
$$a$$
, then

$$rac{\bullet}{F} = P$$

$$*F = P + Ma$$

$$*F = P + Ma + f_k$$

$$*F = P + Ma - f_k$$

Q3. The ball of a conical pendulum rotates in a horizontal circle at **constant speed**, as shown. The work done on the ball by the **tension** \vec{F} during one complete revolution equals

- * $F(2\pi r \sin\theta)$
- * $F(2\pi r \cos\theta)$
- * $F(2\pi r \tan\theta)$

Q4. A block is placed on the top of a vertical relaxed spring, as shown. As the block moves downward and compresses the spring, the work done on the block by the spring is:

- * Positive
- Negative
 - * Zero

