Kuwait University

Physics Department

PHY 102

General Physics II

Second Midterm Examination Summer Semester 2024 - 2025

July 19, 2025 Time: 1:00 PM – 2:30 PM

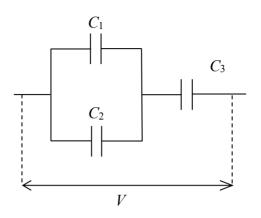
Name: Student No:												
Section No:							Serial No:					
Instructors: Drs. Yahya Al-Munin, Peter Lajko, & Elias Vagenas												
Fundamental constants												
	$k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \text{ Nm}^2/\text{C}^2$						(Coulomb constant)					
$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 / (\mathrm{N} \cdot \mathrm{m}^2)$						(P	(Permittivity of free space)					
$\mu_0=4\pi\times 10^{7}~\text{T.m/A}$						(P	(Permeability of free space)					
$ e = 1.60 \times 10^{-19} \mathrm{C}$						(E	(Elementary unit of charge)					
$N_A = 6.02 \times 10^{23}$						(A	(Avogadro's number)					
$g = 9.8 \text{ m/s}^2$						(A	(Acceleration due to gravity)					
$m_e = 9.11 \times 10^{-31} \text{ kg}$						(E	(Electron mass)					
$m_p = 1.67 \times 10^{-27} \text{ kg}$						(P	(Proton mass)					
Prefixes of units							10.0					
$m = 10^{-3}$ $\mu = 10^{-6}$ $k = 10^{3}$ $M = 10^{6}$							$= 10^{-9}$ $= 10^{9}$			$p = 10^{-12}$ $T = 10^{12}$		
For use by Instructors only												
	Problems	1	2	3	4	5	6	7	8	Questions	Total	
_				-								

Instructions to the Students:

Marks

- 1. Mobile or other electronic devices are **strictly prohibited** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.


1. In the network of capacitors, with capacitances $C_1 = 2$ nF, $C_2 = 6$ nF, $C_3 = 5$ nF, the electric charge stored in the capacitor C_1 is $Q_1 = 40$ nC. Calculate the electric charge Q_3 stored in the capacitor C_3 .

$$C_1 = \frac{Q_1}{V_1} \Longrightarrow V_1 = \frac{Q_1}{C_1} \Longrightarrow V_1 = 20 \text{ V}$$

$$C_{12} = C_1 + C_2 \Longrightarrow C_{12} = 8 \text{ nF}$$

$$Q_{12} = C_{12}V_1 \Longrightarrow Q_{12} = 160 \text{ nC}$$

$$Q_{12} = Q_3 = 160 \text{ nC}$$

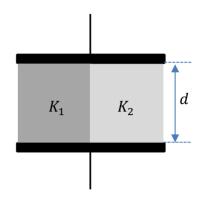
2. An air-filled parallel-plate capacitor is charged so that the positively charged plate has surface charge density $\sigma = 17.7$ µC/m². The volume between the two parallel plates of the conductor is 2×10^{-5} m³. Calculate the electric potential energy stored in the capacitor. [3 points]

$$E = \frac{\sigma}{\varepsilon_0} \Longrightarrow E = 2 \times 10^6 \text{ N/C}$$

$$u = \frac{1}{2} \varepsilon_0 E^2 \Longrightarrow u = 17.7 \text{ J/m}^3$$

$$u = \frac{U}{(volume)} \Longrightarrow U = u \times (volume) \Longrightarrow U = 3.54 \times 10^{-4} \text{ J}$$

3. An air-filled parallel-plate capacitor with plate area A and separation d, has capacitance $C_0 = 20 \,\mu\text{F}$. The capacitor is partially filled with two dielectric materials of dielectric constant $K_1 = 3$ and K_2 , as shown. Each dielectric material fills half of the space between the capacitor plates. The capacitance now is $C = 100 \,\mu\text{F}$. Find the dielectric constant K_2 .


$$C_{0} = \varepsilon_{0} \frac{A}{d}$$

$$C_{1} = K_{1} \varepsilon_{0} \frac{A/2}{d} = \frac{K_{1}}{2} C_{0} = 1.5 C_{0} = 30 \text{ nF}$$

$$C_{2} = K_{2} \varepsilon_{0} \frac{A/2}{d} = \frac{K_{2}}{2} C_{0} = 10 \text{ K}_{2} \text{ nF}$$

$$C_{1} \text{ and } C_{2} \text{ are in parallel}$$

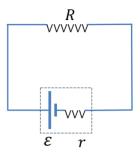
$$C = C_{1} + C_{2} \Rightarrow 100 = 30 + 10 \text{ K}_{2} \Rightarrow K_{2} = 7$$

4. A cylindrical gold wire with length L is connected to a battery which produces an electric field inside the wire of magnitude E = 25 N/C. The gold wire has resistivity $2.44 \times 10^{-8} \ \Omega \cdot m$ and concentration of free electrons $5.90 \times 10^{28} \ m^{-3}$. If the electrons run the whole length of the wire in time $\Delta t = 100 \ s$, calculate the length L of the gold wire.

$$E = \rho J \Longrightarrow J = \frac{E}{\rho} \Longrightarrow J = 1.025 \times 10^9 \text{ A/m}^2$$

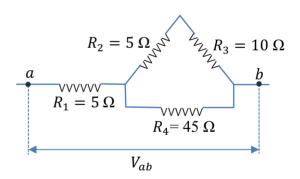
$$J = n|q|v_d \Longrightarrow v_d = \frac{J}{n|e|} \Longrightarrow v_d = 0.109 \text{ m/s}$$

$$v_d = \frac{L}{\Delta t} \Longrightarrow L = v_d \Delta t$$


$$L = 10.9 \text{ m}$$

5. In the electric circuit below, the electric current is I = 3 A. The battery has emf of 10 V and internal resistance r = 1 Ω . Calculate the value of the resistance R. [3 points]

$$V_{term} = \varepsilon - Ir \Longrightarrow V_{term} = 7 \text{ V}$$


$$V_{term} = V_R \Longrightarrow V_R = 7 \text{ V}$$

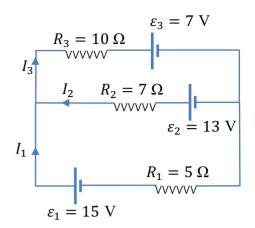
$$V_R = IR \Longrightarrow R = \frac{V_R}{I} \Longrightarrow R = 2.33 \ \Omega$$

6. In the electric circuit below, the electric current through the resistance R_4 is 2 A. Find the electric potential difference $V_{ab} = V_a - V_b$. [5 Points]

$$V_4 = I_4 R_4 \implies V_4 = 90 \text{ V}$$
 $R_{23} = R_2 + R_3 \implies R_{23} = 15 \Omega$
 $V_{23} = V_4 = I_{23} R_{23} \implies I_{23} = \frac{V_{23}}{R_{23}} \implies I_{23} = 6 \text{ A}$
 $I = I_{23} + I_4 \implies I = 8 \text{ A}$
 $R_{234} = \frac{R_4 R_{23}}{R_4 + R_{23}} \implies R_{234} = 11.25 \Omega$
 $R_{eq} = R_1 + R_{123} \implies R_{eq} = 16.25 \Omega$
 $V_{ab} = IR_{eq} \implies V_{ab} = 130 \text{ V}$

7. In the circuit below, find the electric currents I_1 , and I_2 .

[5 Points]


Junction rule:

$$I_3 = I_1 + I_2$$

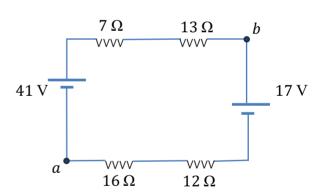
Loop rules:

Lower loop

$$15 + 7I_2 - 13 - 5I_1 = 0 \Longrightarrow 2 - 5I_1 + 7I_2 = 0$$

Upper loop

$$13 - 7I_2 - 10I_3 - 7 = 0 \Longrightarrow 6 - 7I_2 - 10I_3 = 0 \Longrightarrow 6 - 10I_1 - 17I_2 = 0$$


Multiply 2^{nd} equation with (-2): $-4 + 10I_1 - 14I_2 = 0$

Add the last two questions: $2 - 31I_2 = 0 \implies I_2 = 0.065 \text{ A}$

Substitute in the 2nd equation to get: $2 - 5I_1 + 7 \times 0.0645 = 0 \implies I_1 = 0.491 \text{ A}$

8. In the circuit below, find the potential difference $V_a - V_b$.

[4 Points]

Loop rule:

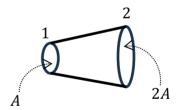
$$41 - 7I - 13I - 17 - 12I - 16I = 0$$

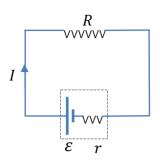
$$24 - 48I = 0 \Longrightarrow I = 0.5 \text{ A}$$

$$V_a + 41 - 7I - 13I = V_b$$

$$V_a - V_b = -41 + 20I \Longrightarrow V_a - V_b = -31 \text{ V}$$

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

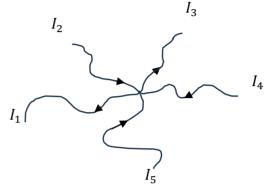

- 1. In an air-filled parallel-plate capacitor, if the separation between the parallel plates of the capacitor is increased by a factor of 3, and the plate area decreases by a factor of 2, then the capacitance is
 - a) increased by a factor of 3.
 - b) increased by a factor of 6.
 - c) decreased by a factor of 3.
 - d) decreased by a factor of 6. (ANSWER)
- 2. An air-filled parallel-plate capacitor is charged by a battery and then the battery is disconnected. If the capacitor is fully filled with a dielectric constant *K*, then the electric energy stored in the capacitor
 - a) increases.
 - b) decreases. (ANSWER)
 - c) remains the same.
 - d) is undetermined.
- 3. A conductor has a variable cross section as shown in the figure. If the drift speed of the moving charges crossing the cross section 1 with cross-sectional area A is v_{d1} , then the drift speed of the moving charges crossing the cross section 2 with cross-sectional area 2A is


d) $v_{d1}/4$.

- 4. In conductors, the current density \vec{J} is directly proportional to the applied electric field \vec{E} . This relationship is called
 - a) Hooke's law.
 - b) Faraday's law.
 - c) Ohm's law. (ANSWER)
 - d) Gauss's law.

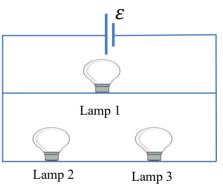
5. For the electric circuit below, the equation $I^2R = \varepsilon I - I^2r$ expresses

- a) the conservation of electric current.
- b) the conservation of electric potential.
- c) the conservation of electric charge.
- d) the conservation of electric energy. (ANSWER)

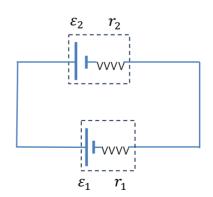

6. Which is the correct junction rule for the junction shown below?

a)
$$I_1 + I_2 - I_3 - I_4 + I_5 = 0$$
.

b)
$$I_1 - I_2 + I_3 - I_4 - I_5 = 0$$
. (ANSWER)


c)
$$I_1 - I_2 + I_3 - I_4 + I_5 = 0$$
.

d)
$$I_1 - I_2 - I_3 + I_4 + I_5 = 0$$
.


7. In the electric circuit below, if lamp 3 is removed, then

- a) lamp 1 and lamp 2 will light the same.
- b) lamp 1 will light the same and lamb 2 will light less.
- c) lamp 1 will light the same and lamp 2 will light more. (ANSWER)
- d) lamp 1 and lamp 2 will light more.

8. In the electric circuit below, if $\varepsilon_2 > \varepsilon_1$, then the direction of the electric current is

- a) clockwise
- b) counterclockwise (ANSWER)
- c) zero.
- d) undetermined.

