Kuwait University

Physics Department

Physics 101

Summer Semester

First Midterm Exam Saturday, July 5, 2025 9:00 AM – 10:30 AM

Studer's e: .		Serial Number:
Student Sumber:	:	Section:
os our Instruc	tor's Name:	
actors: Drs.	Al Dosari, Al Jassar, Al Qattan,	Alsmadi, Salameh, Zaman

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	80	7 Q3	Q4	Total
	2	2	2	2	2	3	3	1		1	1	20
Pts								4	2			

Important:

- 1. Answer all questions and problems (No blion = no points).
- 2. Full mark = 20 points as arranged in pove table.
- 3. Give your final answer in the committee.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

Part I: Short Problems (2 points each)

SP1. Two displacement vectors $|\vec{A}| = 4 m$ and $|\vec{B}| = 5 m$, are shown in the figure. Find $\vec{A} + \vec{B}$ in unit vector notation.

$$\vec{A} = 4\cos(37^{\circ})\,\hat{\imath} + 4\sin(37^{\circ})\,\hat{\jmath} = (3.2\hat{\imath} + 2.4\hat{\jmath})\,m$$

$$\vec{B} = -5\hat{\jmath}\,m$$

$$\vec{A} + \vec{B} = (3.2\hat{\imath} - 2.6\hat{\jmath})\,m$$

SP2. Given two vectors $\vec{A} = 2\hat{\imath} - 2\hat{\jmath}$ and $\vec{B} = \hat{\imath} + 3\hat{\jmath} + 2\hat{k}$. Find $\vec{A} \times \vec{B}$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -2 & 0 \\ 1 & 3 & 2 \end{vmatrix} = \hat{\imath}(-4) + \hat{\jmath}(-4) + \hat{k}(6 - -2)$$

$$\vec{C} = -4\hat{\imath} - 4\hat{\jmath} + 8\hat{k}$$

SP3. A stone is projected from the ground at point A with a speed of $20 \, m/s$ at an angle $\theta = 37^{\circ}$, as shown. Find the velocity of the stone at point C (just before it hits the ground) in unit vector notation.

$$v_{xi} = v_i \cos 37^o = 16 \, m/s$$

 $v_{yi} = v_i \sin 37^o = 12 \, m/s$
 $v_x(C) = v_{xi} = 16 \, m/s$
 $v_y(C) = -v_{yi} = -12 \, m/s$
 $\vec{v}_c = (16\hat{\imath} - 12\hat{\jmath}) \, m/s$

SP4. A particle moves along a **circular path** with a radius R = 2m. At an instant when its **speed** is 3 m/sand increasing at a rate of 5 m/s^2 , what is the magnitude of its total acceleration?

$$|\vec{a}| = \sqrt{(a_r)^2 + (a_T)^2}$$

$$|\vec{a}| = \sqrt{(a_r)^2 + (a_T)^2}$$

 $|\vec{a}| = \sqrt{(\frac{v^2}{R})^2 + (5)^2}$

$$|\vec{a}| = \sqrt{(\frac{3^2}{2})^2 + (5)^2} = 6.7m/s^2$$

SP5. A stone is thrown vertically upward from the ground at point A with an initial velocity (\vec{v}_0) . It takes 0.8 seconds to travel from point A to point B. How long will it take to travel from point A to point C?

From A to B:
$$y = y_0 + v_0 t - \frac{1}{2}gt^2$$

$$12 = 0 + v_0(0.8) - 5(0.8)^2$$

$$v_0 = 19 \ m/s$$

From A to C:
$$y = y_0 + v_0 t - \frac{1}{2}gt^2$$

$$18 = 0 + (19)(t) - 5(t)^2$$

$$t = 1.8 \, s$$

Part II: Long Problems (3 points each)

LP1. A particle moves along the x-axis. Its position as a function of time is given by $x(t) = -12t + 1.5t^2$, where x is in *meters* and t is in *seconds*.

a) Find the speed of the particle at t = 0 s.

$$v_x(t) = \frac{dx}{dt} = -12 + 3t$$

$$v_x(t=0) = -12m/s$$

$$|v_x(t=0)| = 12m/s$$

b) Find the <u>average acceleration</u> of the particle during the period from t = 1s to t = 3s.

$$a_{av-x} = \frac{v_{x_f} - v_{x_i}}{t} = \frac{v_x(3s) - v_x(1s)}{2} = \frac{-3 - (-9)}{2} = 3 \text{ m/s}^2$$

c) At what time will the particle change its direction of motion?

$$v_x(t) = -12 + 3t = 0 \implies t = 4 s$$

LP2. A particle moving with **constant acceleration** in the *xy*-plane starts from the origin with an initial velocity $\vec{v}_0 = (4\hat{\imath} + 10\hat{\jmath}) \, m/s$ and **comes to rest momentarily** at t = 2.5s.

a) Find its acceleration in unit vector notation.

$$\begin{split} \vec{v}_f &= \vec{v}_0 + \vec{a}t \\ 0 &= 4\hat{\imath} + 10\hat{\jmath} + \vec{a}(2.5) \\ \vec{a} &= -1.6\hat{\imath} - 4\hat{\jmath} \end{split}$$

b) Find its position at t = 2.5s in unit vector notation.

$$\vec{r}_f = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

$$\vec{r}_f = 0 + (4\hat{\imath} + 10\hat{\jmath}) \times 2.5 + \frac{1}{2} (-1.6\hat{\imath} - 4\hat{\jmath})(2.5)^2 = 5\hat{\imath} + 12.5\hat{\jmath}$$

c) After t = 2.5s, the x-component of the particle's velocity would be:

* Positive

Negative

* Zero

Part III: Questions (Choose the correct answer, one point each)

Q1. Vectors \vec{A} and \vec{B} are shown in the figure. If $\vec{C} = \vec{A} - \vec{B}$, then which of the following statements is correct about the y-components of these vectors?

- $* |C_y| > |A_y|$
- $* |C_y| > |B_y|$
- $* |C_y| < |B_y|$
- $*|C_{\mathcal{Y}}| = |B_{\mathcal{Y}}|$

Q2. A particle moves along the positive x-direction with constant acceleration (\vec{a}) , the magnitude of its velocity $(|\vec{v}|)$ is increasing with time. Which one of the following statements must be correct?

- * $\vec{v} \cdot \vec{a} = 0$

- * $\vec{v} \times \vec{a} = |\vec{v}||\vec{a}|$
- * $\vec{v} \cdot \vec{a} = -|\vec{v}||\vec{a}|$
- Q3. A particle is moving along a curved path and the direction of its total acceleration \vec{a} at point P is shown in the figure. At point P, the particle is:
- * moving with constant speed
- *) speeding up
 - * slowing down
 - * having only centripetal acceleration

Q4. A ball is shot such that it leaves the player's foot at point A above ground level, as shown. During the ball's travel **from point A to point B**, which of the following graphs represents the y-component of the ball's velocity (v_y) as a function of time?

