

Department of Physics

General Physics II for Biological Sciences (Phy 122)

Second Midterm Examination (Summer Semester 2024-2025)

July 24, 2025

Time: 4:00 PM to 5:30 PM

Instructor: Dr. S.S.A. Razee

Solution

Fundamental Constants

$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	
---	--

Coulomb's constant

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$$

Permitivity of free space

$$\mu_0 = 4\pi \times 10^{-7}~\mathrm{T\cdot m/A}$$

Permeability of free space

$$e = 1.6 \times 10^{-19} \text{ C}$$

Elementary charge

$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

Mass of an electron

$$m_p = 1.67 \times 10^{-27} \text{ kg}$$

Mass of a proton

$$eV = 1.6 \times 10^{-19} \text{ J}$$

Conversion from eV to J

$$N_A = 6.022 \times 10^{23} / \text{mol}$$

Avogadro's number

Prefixes of units

$$m = 10^{-3}$$

$$\mu = 10^{-6}$$

$$n = 10^{-9}$$

$$p = 10^{-12}$$
 $k = 10^3$

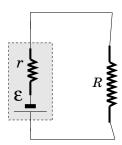
$$k = 10^3$$

$$M = 10^6$$

Instructions to the Students:

- All communication devices must be switched off and placed in your bag. Anyone found using a communication device will be disqualified.
- Programmable calculators, which can store equations, are not allowed.

1. In the circuit shown, $R=22.0~\Omega$, the emf of the real battery $\mathcal{E}=36.0~\mathrm{V}$ and the internal resistance of the battery is $r=2.0~\Omega$. Find the **terminal voltage** of the battery. 3 points



Solution: The current in the circuit is

$$I = \frac{\mathcal{E}}{R+r} = 1.5 \text{ A}$$

The terminal voltage is

$$V_T = \varepsilon - Ir = 33 \text{ V}$$

2. An electric heater is required to produce 3.6×10^5 J of heat energy in 5 minutes. It is to be connected to a 220 V source and the heating element is made of a material with resistivity $\rho = 6.0 \times 10^{-6} \ \Omega$ ·m. If the radius of the wire is 1.2 mm, what must be the length of the wire? 3 points

Solution: We have

$$P = \frac{\text{Energy}}{t} = 1200 \text{ W}$$

The resistance of the wire:
$$P = \frac{V^2}{R} \implies R = \frac{V^2}{P} = 40.3 \Omega$$

Then

$$R = \rho \frac{L}{A} \implies L = \frac{RA}{\rho} = \frac{R\pi r^2}{\rho}$$

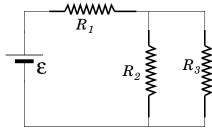
 $\implies L = 30.4 \text{ m}$

- 3. In the circuit shown, $R_1 = R_2 = 12.0 \Omega$ and $\mathcal{E} = 21.0 \text{ V}$, but R_3 is unknown. The power dissipated in R_2 is $P_2 = 3.0 \text{ W}$.
 - (a) Find the power P_1 dissipated in R_1 .

3 points

(b) Find the power P_3 dissipated in R_3 .

2 points



Solution: We can calculate V_2 and/or I_2 ,

$$P_2 = \frac{V_2^2}{R_2} \implies V_2 = \sqrt{P_2 R_2} = 6.0 \text{ V}$$

Then

$$R_2$$
 and R_3 are parallel R_1 and R_{23} are in series \Longrightarrow $\begin{cases} V_{23} = V_2 = 6.0 \text{ V} \\ V_1 = \mathcal{E} - V_{23} = 15.0 \text{ V} \end{cases}$

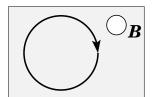
So
$$P_1 = \frac{V_1^2}{R_1} = 18.75 \text{ W}$$
 and $I_1 = \frac{V_1}{R_1} = 1.25 \text{ A}$

$$\left. \begin{array}{l} R_2 \text{ and } R_3 \text{ are parallel} \\ R_1 \text{ and } R_{23} \text{ are in series} \end{array} \right\} \ \implies \ I_{123} = I_1 = 1.25 \text{ A}$$

Total power in the circuit:
$$P = I_{123}\mathcal{E} = 26.25 \text{ W}$$

Power dissipated in
$$R_3$$
: $P_3 = P - P_1 - P_2 \implies P_3 = 4.5 \text{ W}$

- 4. An electron moves in a **clockwise** circular path of radius R = 2.0 mm in a region of uniform magnetic field of magnitude $B = 4.0 \times 10^{-3}$ T (shown in the figure).
 - (a) What is the **direction** of the **magnetic field** \vec{B} ? (Tick the correct answer) 1 point



out-of-the-plane \odot

(b) Find the magnitude of the **magnetic force** \vec{F}_B on the electron.

2 points

First find the speed:

$$R = \frac{mv}{B|q|} \implies v = \frac{B|q|R}{m} = 1.4 \times 10^6 \text{ m/s}$$

For circular motion, the angle between \vec{B} and \vec{v} is $\theta = 90^{\circ}$. So

$$F_B = |q|vB = 9.0 \times 10^{-16} \text{ N}$$

(c) Find the **kinetic energy** of the electron in **eV**. **1 point**

$$KE = \frac{1}{2}mv^2 = 8.93 \times 10^{-19} \text{ J} = 5.6 \text{ eV}$$

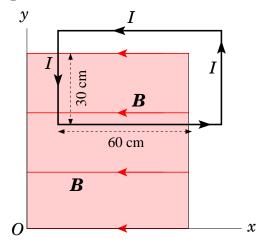
- 5. A uniform magnetic field of magnitude $B = 5.0 \times 10^{-3}$ T in the -x-direction is established in the shaded area (see figure below). A rectangular (80 cm×40 cm) wire carrying a current I = 7 A is partly inside the region as shown.
 - (a) Find the **magnitude** of the **magnetic** force (\vec{F}_B) on the wire. 2 points

For a **straight** wire, the magnetic force is

$$F_B = ILB \sin \theta$$

where, L = length of the wire inside theregion of magnitude field and θ = angle between L and \boldsymbol{B} .

Here, we have **two** pieces of straight wires inside the region of magnetic field:



$$L_1 = 30 \text{ cm}, \ \theta = 90^{\circ}$$
 $L_2 = 60 \text{ cm}, \ \theta = 0^{\circ}$

$$L_2 = 60 \text{ cm}, \ \theta = 0^{\circ}$$

$$\implies F_{B1} = IL_1B \sin 90^\circ = 0.0105 \text{ N}$$
 $F_{B2} = IL_2B \sin 0^\circ = 0$

$$F_{B2} = IL_2B \sin 0^\circ = 0$$

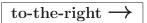
So, the magnitude of the net magnetic force is

$$F_B = F_{B1} + F_{B2} = 0.0105 \text{ N}$$

(b) What is the **direction** of \vec{F}_B ? (Tick the correct answer)

upward 1

downward \



to-the-left

into-the-plane 🛇

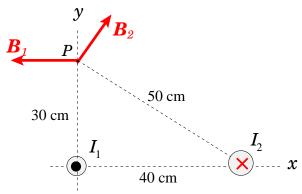
out-of-the-plane (•)

- 6. Two long straight wires carrying currents perpendicular to the xy-plane are shown. The current $I_1 = 6$ A, out-of-the-plane (see the figure) and the x-component of the net magnetic field at the point P is $B_x = +3.0 \times 10^{-6}$ T. The current I_2 is unknown. We denote \vec{B}_1 and \vec{B}_2 as the magnetic fields at P due to currents I_1 and I_2 respectively.
 - (a) Draw the vector \vec{B}_1 at P.

1 point

Using the right-hand-rule, $\vec{\boldsymbol{B}}_1$ is in the negative x-direction

$$B_{1,x} = -B_1 = -\frac{\mu_0 I_1}{2\pi \times 0.3} = -4.0 \times 10^{-6} \text{ T}$$



$$B_x = B_{1,x} + B_{2,x} \implies B_{2,x} = +7.0 \times 10^{-6} \text{ T}$$

(c) Use the value of $B_{2,x}$ to draw the vector \vec{B}_2 at P. 1 point

Since $B_{2,x} > 0$ and \vec{B}_2 must be perpendicular to the 50 cm line, the only way to draw \vec{B}_2 is as shown in the figure.

(d) Use the vector \vec{B}_2 to find the **direction** of I_2 (Tick the correct answer). 1 point

 I_2 is into-the-plane \bigotimes

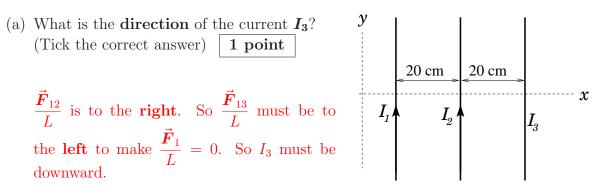
 I_2 is out-of-the-plane \odot

(e) Find the value of I_2 . **2 points**

$$B_{2,x} = +B_2 \times \frac{0.3}{0.5} \implies 7.0 \times 10^{-6} = \frac{\mu_0 I_2}{2\pi \times 0.5} \times \frac{0.3}{0.5} \implies I_2 = 29.2 \text{ A}$$

- 7. Three long straight current-carrying wires are parallel to the y-axis and in the xy-plane as shown. The current $I_1 = 3$ A, **upward** (\uparrow) and the current $I_2 = 4$ A, **upward** (\uparrow). The net magnetic force per m of the wire 1, i.e. $\frac{\mathbf{F}_1}{I} = 0$.

downward.



(b) What is the value of I_3 ? | 2 points

$$\frac{F_{12}}{L} = \frac{F_{13}}{L} \implies \frac{\mu_0 I_1 I_2}{2\pi \times 0.2} = \frac{\mu_0 I_1 I_3}{2\pi \times 0.4} \implies I_3 = 8 \text{ A}$$

(c) $\frac{F_2}{I}$ = net magnetic force per m of wire 2. Find its magnitude. 2 points

$$\frac{F_{21}}{L} = \frac{\mu_0 I_1 I_2}{2\pi \times 0.2} = 1.2 \times 10^{-5} \text{ N/m},$$
 to-the-left

$$\frac{F_{23}}{L} = \frac{\mu_0 I_2 I_3}{2\pi \times 0.2} = 3.2 \times 10^{-5} \text{ N/m},$$
 to-the-left

So, the magnitude of $\frac{\vec{F}_2}{I}$ is

$$\frac{F_2}{L} = \frac{F_{21}}{L} + \frac{F_{23}}{L} = 4.4 \times 10^{-5} \text{ N/m},$$
 to-the-left

(d) What is the **direction** of $\frac{F_2}{L}$? 1 point

