Kuwait University

Physics Department

Physics 101

Summer Semester

First Midterm Exam Saturday, July 5, 2025 9:00 AM – 10:30 AM

Student's Name:		Serial Number:							
Student's Number	::	Section:							
Choose your Instructor's Name:									
Instructors: Drs.	Al Dosari, Al Jassar, Al Qattan,	Alsmadi, Salameh, Zaman							

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2	2	2	2	3	3	1	1	1	1	20
Pts												

Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 20 points as arranged in the above table.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

Part I: Short Problems (2 points each)

SP1. Two displacement vectors $|\vec{A}| = 4 m$ and $|\vec{B}| = 5 m$, are shown in the figure. Find $\vec{A} + \vec{B}$ in unit vector notation.

SP2. Given two vectors $\vec{A} = 2\hat{\imath} - 2\hat{\jmath}$ and $\vec{B} = \hat{\imath} + 3\hat{\jmath} + 2\hat{k}$. Find $\vec{A} \times \vec{B}$

SP3. A stone is projected from the ground at point A with a speed of 20 m/s at an angle $\theta = 37^{\circ}$, as shown. Find the velocity of the stone at point C (just before it hits the ground) in unit vector notation.

SP4. A particle moves along a circular path with a radius R = 2 m. At an instant when its speed is 3 m/s and increasing at a rate of $5 m/s^2$, what is the magnitude of its total acceleration?

SP5. A stone is thrown vertically upward from the ground at point A with an initial velocity (\vec{v}_0) . It takes 0.8 seconds to travel from point A to point B. How long will it take to travel from point A to point C?

Part II: Long Problems (3 points each)

LP1. A particle moves along the x-axis. Its position as a function of time is given by $x(t) = -12t + 1.5t^2$, where x is in *meters* and t is in *seconds*.

a) Find the speed of the particle at t = 0 s.

b) Find the average acceleration of the particle during the period from t = 1s to t = 3s.

c) At what time will the particle change its direction of motion?

LP2.	A particle moving	with constant	acceleration	in the xy-plane	starts	from the	origin	with	an i	initial
veloc	ity $\vec{v}_0 = (4\hat{\imath} + 10\hat{\jmath})$) m/s and com	es to rest mor	nentarily at $t =$	2.5 <i>s</i> .					

a) Find its acceleration in unit vector notation.

b) Find its position at t = 2.5s in unit vector notation.

c) After t = 2.5s, the x-component of the particle's velocity would be:

* Positive

* Negative

* Zero

Part III: Questions (Choose the correct answer, one point each)

Q1. Vectors \vec{A} and \vec{B} are shown in the figure. If $\vec{C} = \vec{A} - \vec{B}$, then which of the following statements is correct about the y-components of these vectors?

- $* |C_y| > |A_y|$
- * $|C_y| > |B_y|$
- $* |C_y| < |B_y|$
- $* |C_{y}| = |B_{y}|$

Q2. A particle moves along the positive x-direction with constant acceleration (\vec{a}) , the magnitude of its velocity $(|\vec{v}|)$ is increasing with time. Which one of the following statements must be correct?

* $\vec{v} \cdot \vec{a} = 0$

* $\vec{v} \times \vec{a} = |\vec{v}||\vec{a}|$

* $\vec{v} \cdot \vec{a} = |\vec{v}| |\vec{a}|$

* $\vec{v} \cdot \vec{a} = -|\vec{v}||\vec{a}|$

Q3. A particle is moving along a curved path and the direction of its total acceleration \vec{a} at point P is shown in the figure. At point P, the particle is:

- * moving with constant speed
- * speeding up
- * slowing down
- * having only centripetal acceleration

Q4. A ball is shot such that it leaves the player's foot at point A above ground level, as shown. During the ball's travel **from point A to point B**, which of the following graphs represents the y-component of the ball's velocity (v_y) as a function of time?

