Kuwait University

Physics Department

Physics 101

Spring Semester First Midterm Exam Sunday, March 9, 2025 8:30 PM - 10:00 PM

Student's Name:		Serial Number:						
Student's Numbe	r:	Section:						
Choose your Instructor's Name:								
Instructors: Drs.	Al Dosari, Alkurtass, Al Qattan, Al Refai, Al Smadi, As							
	Demir, Salameh, Zaman							

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2	2	2	2	3	3	1	1	1	1	20
Pts												

Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 20 points as arranged in the above table.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Short Problems (2 points each)

SP1. Two vectors \vec{A} and \vec{B} are shown in the figure. Write \vec{A} and \vec{B} in unit vector notation.

SP2. Given the two vectors $\vec{A} = (2\hat{\imath} - 4\hat{\jmath})$ and $\vec{B} = (-2\hat{\imath} + 3\hat{\jmath})$, if $\vec{C} = \vec{A} + 2\vec{B}$, find the angle between \vec{C} and the +x axis.

SP3. The position vector of a particle moving in the xy - plane is given by: $\vec{r} = (2t - t^3)\hat{\imath} + (4t^2)\hat{\jmath}$ where t is measured in seconds and \vec{r} is measured in meters. **Find the speed of the particle at** t = 2 **seconds**.

SP4. A ball is thrown **upward** with an initial velocity (v_0) from the top of a building with a height (h). It takes t = 2s to reach its maximum height and then hits the ground at point **B** with a speed of $35 \, m/s$. What is the height of the building (h)?

SP5. The position-time graph of an object moving along the x-axis is shown in the figure. Find the <u>average</u> <u>acceleration</u> between $\underline{t} = 2 s$ and $\underline{t} = 10 s$.

Part II: Long Problems (3 points each)

- **LP1.** Given two vectors: $\vec{A} = (3\hat{\imath} 4\hat{\jmath} + 4\hat{k})$ and $\vec{B} = (2\hat{\imath} + 3\hat{\jmath} 7\hat{k})$.
 - (a) Find $\vec{C} = 2\vec{A} \vec{B}$ in unit vector notation.

(b) Find the vector product $\vec{A} \times \vec{B}$.

(c) Find $\vec{C} \cdot (\vec{A} \times \vec{B})$.

LP2. An object moves along the **x-axis** with its position as a function of time given by: $x(t) = 4t - 0.125t^4$ where x is measured in *meters* and t is measured in *seconds*.

(a) Find the <u>average velocity</u> between $\underline{t} = 0$ s and $\underline{t} = 4$ s.

(b) Find the time when the object changes its direction of motion.

(c) Find the average speed of the object between t = 0 and t = 4 s.

Part III: Questions (Choose the correct answer, one point each)

Q1. Which of the following relations describes the vector \vec{A} in the figure?

- * $\vec{A} = \vec{B} + \vec{C} + \vec{D}$
- * $\vec{A} = \vec{B} + \vec{C} \vec{D}$
- * $\vec{A} = \vec{B} \vec{C} \vec{D}$
- * $\vec{A} = \vec{B} \vec{C} + \vec{D}$

Q2. An object is moving along a straight line. Which of the following is true if the object is speeding up?

- * v > 0, a < 0
- * v = 0, a = 0
- * v < 0, a < 0
- * v < 0, a > 0

Q3. The value of $\hat{\imath} \cdot (\hat{k} \times \hat{\jmath})$ is

* -1

* +1

* 0

* î

Q4. The velocity and acceleration of an object at a certain instant are:

$$\vec{v} = -2 \hat{j} m/s;$$
 $\vec{a} = (3\hat{i} + 4\hat{j}) m/s^2.$

At this instant, the object is

- * moving in a straight line and slowing down.
- * moving in a curved path and slowing down.
- * moving in a straight line and speeding up.
- * moving in a curved path and speeding up.