Kuwait University

KUWAIT UNIVERSITY

Physics Department

Physics 101												
Spring Semester												
Second Midterm Exam												
Monday, April 21, 2025												
6:30 PM – 08:00 PM												
Student's Name:												
Student's Number:												
Choose your Instructor's Name												
Instructors: Drs. Al Dosari, Alkurtass, Al Qattan, Al Refai, Al Smadi, Askar,												
Demir, Salameh, Zaman												
For Instructors use only												
Gr	ades							<		$\overline{\boldsymbol{\lambda}}$		
#	SPI	SP2	SP3	SP4	SP5	LP1	LP2	Q1	Q2	Q3	Q4	Total
	2	2	2	2	2	3	3	(A)	$\overrightarrow{\gamma}_1$	1	1	20
Pts								<u>4</u> /(

Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 20 points as arranged in the above table.
- 3. Give your final answer in the correct units.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **<u>strictly prohibited</u>** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

GOOD LUCK

Part I: Short Problems (2 points each)

SP1. A block (m = 8 kg) is pushed along a horizontal **frictionless** floor by a force $|\vec{F}| = 24 N$ at an angle $\theta = 30^{\circ}$ with the horizontal, as shown. Find the magnitude of the block's acceleration.

 $Fcos\theta = ma$ 24cos30 = 8a $a = 2.6 m/s^2$

SP2. The figure shows the <u>net force</u> \vec{F} at a given instant on an object (m = 0.6 kg) moving in a vertical circle of radius (R = 2.5 m). If $|\vec{F}| = 12 N$, find the speed of the particle at that instant.

SP3. The only force acting on an object (m = 5 kg) moving along the x-axis is given by:

$$F(x) = (18 - 0.5x) N$$
,

where x is given in *meters*. If the object is initially at rest at x = 0, what is its speed at x = 11m?

$$W = \int_{0}^{11} (18 - 0.5x) dx = (18x - 0.25x^{2})|_{0}^{11} = 167.8 J$$
$$W = 167.8 = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2} = 2.5v_{f}^{2}$$
$$v_{f} = 8.2 m/s$$

 $\alpha \approx 35.5^{\circ}$

SP4. Two masses $(m_1 = 160 \ kg \ and \ m_2 = 190 \ kg)$ are connected by a light rope, as shown. A motor is used to lift these masses upward from the ground. What power delivered by the motor is required to lift these masses at <u>a constant speed</u> of $4 \ m/s$?

 $\Sigma F_y = T - m_1 g - m_2 g = 0$ $T = m_1 g + m_2 g = (1600 + 1900) = 3500 N$ P = Tv = (3500)(4) = 14000 W

Ground

SP5. A body $(m_A = 9 kg)$ rests on a horizontal table, as shown. Another body $(m_B = 5 kg)$ is placed on body *A* and a horizontal force (F = 100 N) is applied to body *A*. If all surfaces are **frictionless, find the angle** α **that allows both bodies to move with the <u>same acceleration</u>.**

Part II: Long Problems (3 points each)

LP1. Two blocks are placed on top of each other on a **frictionless** table, as shown. The surface between block A and block B is **rough**. They are connected by a light string that passes around a fixed frictionless, and massless pulley. A horizontal force $|\vec{F}| = 10 N$ is applied to **block B**, causing it to **move to the left at a constant speed**.

a) Find the magnitude of the friction force acting on block A.

For A:
$$T - f_k = 0$$

 $f_k = T$

For B: $F - T - f_k = 0$ $F - 2f_k = 0$ $f_k = \frac{1}{2}F = 5 N$

b) After block B has moved a distance s = 0.2 m, find the work done by the friction force on block A.

$$W_{fk} = -|f_k||s| = -5 \times 0.2 = -1J$$

c) What is the correct relation between the total work done on block A $(W_{\text{tot A}})$ and on block B $(W_{\text{tot B}})$?

()

 $W_{\text{tot A}} = W_{\text{tot B}}$ * $W_{\text{tot A}} > W_{\text{tot B}}$ * $W_{\text{tot A}} < W_{\text{tot B}}$

LP2. A block of mass (m = 1.4 kg) is projected with a speed v_A from point **A** on **a frictionless** incline toward a spring, as shown. The spring (k = 1450 N/m) is compressed a maximum distance (x = 0.2 m) before coming to **rest momentarily** at point **C**.

a) Calculate the work done by gravity as the block moves from point A to point C.

 $W_g = mg \times s \times sin\theta$ $W_g = 14 \times 3.2 \times sin40 = 28.8 J$

b) Use the work-energy theorem to calculate the block's speed at point A.

$$W_g + W_n + W_s = K_f - K_i$$

28.8 + 0 + $-\frac{1}{2}kx^2 = \frac{1}{2}mv_c^2 - \frac{1}{2}mv_A^2$
28.8 - $\frac{1}{2}(1450)(0.2)^2 = -\frac{1}{2}(1.4)v_A^2$

$$28.8 - \frac{1}{2}(1450)(0.2)^2 = -\frac{1}{2}(1.0)^2 = -\frac{1}{2}(1.0)^2$$

c) What is the direction of the block's acceleration at point C?

Part III: Questions (Choose the correct answer, one point each)

Q1. Three boxes are stacked on top of each other on a horizontal table, as shown. A horizontal force (\vec{F}) is applied to box A, causing all the boxes to move with the <u>same acceleration</u>. Which of the following correctly represents the free-body diagram of box B?

Q2. A woman with mass (m) stands on a bathroom scale in an elevator. While the elevator is slowing down as it goes downward, the scale (n) reads

() $n > mg$	*	n = mg
* n < mg	*	n = 0

Q3. Three boxes $(m_1 < m_2 < m_3)$ are in contact on a **rough** horizontal surface, as shown. A constant horizontal force acts on box 1, and the system moves to the right at a <u>constant acceleration</u>. Which box has the <u>lowest net force</u>?

Q4. A block is sliding down a **rough** incline, as shown. If the **total work done on the block is zero**, which of the following is correct about the weight (mg) and the magnitude of friction (f_k) ?

*
$$mg < f_k$$

 $mg > f_k$

$$mg = f_k = 0$$

* $mg = f_k \neq 0$